首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   980篇
  免费   27篇
  国内免费   7篇
测绘学   32篇
大气科学   78篇
地球物理   194篇
地质学   308篇
海洋学   120篇
天文学   194篇
自然地理   88篇
  2022年   5篇
  2021年   10篇
  2020年   11篇
  2019年   13篇
  2018年   9篇
  2017年   15篇
  2016年   25篇
  2015年   21篇
  2014年   26篇
  2013年   50篇
  2012年   24篇
  2011年   62篇
  2010年   31篇
  2009年   45篇
  2008年   39篇
  2007年   42篇
  2006年   48篇
  2005年   30篇
  2004年   34篇
  2003年   33篇
  2002年   39篇
  2001年   34篇
  2000年   25篇
  1999年   19篇
  1998年   18篇
  1997年   15篇
  1996年   17篇
  1995年   15篇
  1994年   17篇
  1993年   14篇
  1992年   9篇
  1991年   16篇
  1990年   12篇
  1989年   9篇
  1988年   13篇
  1987年   11篇
  1986年   6篇
  1985年   21篇
  1984年   18篇
  1983年   11篇
  1982年   10篇
  1981年   10篇
  1979年   15篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1974年   5篇
  1973年   5篇
  1971年   5篇
  1970年   4篇
排序方式: 共有1014条查询结果,搜索用时 906 毫秒
901.
902.
Clastic varved sediments from Donard Lake, in the Cape Dyer region of Baffin Island, provide a 1250 yr record of decadal-to-centennial scale climate variability. Donard Lake experiences strong seasonal fluctuations in runoff and sediment fluxes due to the summer melting of the Caribou Glacier, which presently dominates its catchment. The seasonal variation in sediment supply results in the annual deposition of laminae couplets. A radiocarbon date measured on moss fragments, with a calibrated age of 860 ± 80 yrs before present (BP), is in close agreement with the age based on paired-layer counts. Together with the fabric of the laminae determined from microscope analysis, the age agreement demonstrates that the laminae couplets are annually deposited varves. Comparisons of varve thickness and average summer temperature from nearby Cape Dyer show a significant positive correlation (r= 0.57 for annual records, r = 0.82 for 3-yr averages), indicating that varve thickness reflects changes in average summer temperature. Varve thickness was used to reconstruct average summer temperatures for the past 1250 yrs, and shows abrupt shifts and large amplitude decadal-to-centennial scale variability throughout the record. The most prominent feature of the record is a period of elevated summer temperatures from 1200-1375 AD, followed by cooler conditions from 1375-1820 AD, coincident with the Little Ice Age.  相似文献   
903.
904.
905.
We show that protons can be accelerated to several GeV in 10 s by Alfven turbulence whose energy density is greater than a few erg/cm3. We also show that electrons can be accelerated to tens of MeV on similar time scales by whistler and Alfven turbulence.  相似文献   
906.
907.
Results are presented from a high precision geophysical profile made at an altitude of about 100 m above the sea floor with the Deep Two instrument package, crossing the Red Sea at 17°30N. The emphasis is on the analysis and interpretation of the magnetic field, including an inversion which removes the distortions due to bathymetry and the orientation with respect to the earth's main field vector. The spreading rates are determined precisely and found to be highly asymmetric: only 5 mm yr-1 to the east and up to 10 mm yr-1 to the west. We conclude that the axis of spreading is located on a volcanic ridge, rather than on the axial graben, based on the presence of a zone of high magnetization. The magnetization high (40 Am-1) is about twice as great as found on the Mid-Atlantic Ridge with the same instrument and analysis. The quality of the recording of the magnetic anomalies in the oceanic crust is much greater than expected for such a low spreading rate.  相似文献   
908.
Six Deep-Tow magnetic profiles across the axis of the East Pacific Rise [EPR] in two small areas between 19°25 and 20°10S were collected during the 1983 Protea 1 cruise of the R/V Melville. These near-bottom profiles are of extremely high resolution allowing the interpretation of very short wavelength features. We have inverted the magnetic field data to determine the rock magnetization distribution near the axis of this ultrafast speading center (162 mm yr-1). The solutions reveal large amplitude (up to 35 A m-1) short wavelength (1–3 km) variations in magnetization. Specifically all crossings show a narrow (0.5 to 1.5 km) low in magnetization superimposed on a broader (2.5 to 4 km) high directly over the ridge axis. Four profiles in the northern area (19°25 to 19°33S) also show symmetrical near-axis (within 4 km) lows which are remarkably continuous along strike. Explanations for the short-wavelength variations are discussed which fall into the following categories: (1) variations in the thickness of the magnetized layer, (2) variations in rock chemistry (e.g. alteration due to hydrothermal activity), and (3) paleofield intensity variations. None of the mechanisms discussed alone adequately explain the observed phenomena in the study area or on a world-wide scale. Further sampling and high resolution surveying will be required in order to accurately determine the relative importance of the mechanisms discussed.  相似文献   
909.
The Nereus Deep (23°N) lies in the central portion of the Red Sea, in a region which marks a transition between the nearly continuous axial rift valley of the southern Red Sea and the northern Red Sea, where a well defined axial rift is absent. The deep-tow survey and associated heat flow measurements reported here show that the Nereus Deep is a short segment of axial rift, and it is the northernmost deep where petrology, heat flow, magnetics, and morphology all indicate classic seafloor spreading. Heat flow measured in the Nereus Deep is characterized by non-linear gradients and closely-spaced variability indicative of active hydrothermal circulation associated with seafloor spreading. The two axial highs which we have mapped in Nereus differ markedly in that the southernmost appears younger or at least has had a more recent phase of volcanism. The two axial highs are offset left laterally approximately 2 km. This small offset or bend in the axial course has been labelled the Nereus shear zone, and, despite its small extent, it mimics many of the major features of small offset, slow-slipping transform faults. This shear zone may result from shear stresses associated with misalignments in succeeding volcanic episodes. The Nereus Deep appears to represent one of the earliest phases of seafloor spreading. The Red Sea seems to be opening towards the north, and the Nereus Deep is near the tip of propagation, but it is clear from this study that rift propagation in a site of initial rifting differs greatly from that observed along a well developed, fast spreading center like the East Pacific Rise.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号