首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113211篇
  免费   1652篇
  国内免费   694篇
测绘学   2578篇
大气科学   7492篇
地球物理   22108篇
地质学   40385篇
海洋学   10114篇
天文学   26245篇
综合类   334篇
自然地理   6301篇
  2022年   730篇
  2021年   1279篇
  2020年   1393篇
  2019年   1456篇
  2018年   3074篇
  2017年   2830篇
  2016年   3346篇
  2015年   1764篇
  2014年   3275篇
  2013年   5870篇
  2012年   3560篇
  2011年   4688篇
  2010年   4214篇
  2009年   5447篇
  2008年   4719篇
  2007年   4835篇
  2006年   4477篇
  2005年   3284篇
  2004年   3221篇
  2003年   3023篇
  2002年   2990篇
  2001年   2587篇
  2000年   2526篇
  1999年   2048篇
  1998年   2140篇
  1997年   1980篇
  1996年   1720篇
  1995年   1722篇
  1994年   1475篇
  1993年   1379篇
  1992年   1293篇
  1991年   1328篇
  1990年   1338篇
  1989年   1185篇
  1988年   1088篇
  1987年   1293篇
  1986年   1118篇
  1985年   1396篇
  1984年   1590篇
  1983年   1515篇
  1982年   1378篇
  1981年   1335篇
  1980年   1176篇
  1979年   1102篇
  1978年   1083篇
  1977年   953篇
  1976年   951篇
  1975年   926篇
  1974年   896篇
  1973年   990篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Haploborolls and Ustifluvents with A-C horizonation characterize Holocene soil development in alluvium and colluvium of the Laddie Creek valley. Cumulic soils with overthickened A horizons, including those of Altithermal age, have formed along the valley walls under the influence of spring activity from the Amsden Formation (Mississippian-Pennsylvanian). Soil texture, mineralogy, and to some extent color, are inherited largely from sediment derived from the Amsden and Tensleep (Pennsylvanian) Formations. The valley was able to support human occupation during Altithermal time (ca. 7500-4000 B.P.) because of springs emanating from the valley walls. Past spring locations are identified from soil morphology and stratigraphy. Springs are still active along the valley, although they have shifted positions many times in the past. The association of spring soils with Altithermal-age occupation at the site (ca. 6600-5700 B.P.) does not coincide with the caliche concept of the Altithermal paleosol in Holocene alluvial valleys in Wyoming basins as identified by Leopold and Miller. Nevertheless, early man of Altithermal time probably sought higher elevations within mountains of the region where springs offered water and the environs provided food and shelter—thus enabling human groups to survive the drought, and possible high temperatures, which seemingly prevailed in the basins and plains.  相似文献   
102.
In this paper new data on the absolute age and geochemistry of rocks of the Bol’shakovskii massif, situated in the central part of the Aramil-Sukhteli zone of the Southern Urals, are given. The obtained values are evidence for its Visean age. By the geological-petrographic and petro- and geochemical features, the rocks of the Bol’shakovskii complex differ sharply from ophiolite-type gabbroids, although they reveal a substantial similarity with the gabbro-granite formation of the Magnitogorsk megazone. The Bol’shakovskii massif is situated in the northern branch of the South Urals zone of Early Carboniferous riftogenesis; and its formation is most probably associated with magmatism events during the rift regime in the died_out island arc.  相似文献   
103.
Résumé Un modèle de représentation du potential terrestre par 126 masses ponctuelles de profondeurs situées entre 1000 et 1500 km a été construit à partir de la Standard Earth II du S.A.O. et utilisé avec succès pour la représentation du géo?de, des anomalies de gravité, ainsi qu’en calcul d’orbites par correction différentielle utilisant des observations réelles de satellites artificiels. Les propriétés de décroissance rapide de ces fonctions sont mises en évidence, et leur utilisation envisagée à l’analyse scientifique de mesures altimétriques.  相似文献   
104.
Summary This paper presents a digital image based approach for three-dimensional (3-D) numerical simulation and failure analysis of rocks by taking into account the actual 3-D heterogeneity. Digital image techniques are adopted to extract two-dimensional (2-D) material heterogeneity from material surface images. The 2-D image mesostructures are further extrapolated to 3-D cuboid mesostructures by assuming the material surface as a representation of the inner material heterogeneity within a very small depth. The iterative milling and scanning system is set up to generate the 3-D rock mesostructures. A Hong Kong granite specimen is used as an example to demonstrate the procedure of 3-D mesostructure establishment. The mechanical responses and failure process under the conventional Brazilian tensile test condition are examined through numerical analyses. The stress distribution, crack propagation process and failure model of heterogeneous material cases are simulated with a finite difference software. The numerical results indicate that material heterogeneity plays an important role in determining the failure behavior of rocks under external loading.  相似文献   
105.
One effect of climate change may be increased hurricane frequency or intensity due to changes in atmospheric and geoclimatic factors. It has been hypothesized that wetland restoration and infrastructure hardening measures may improve infrastructure resilience to increased hurricane frequency and intensity. This paper describes a parametric decision model used to assess the tradeoffs between wetland restoration and infrastructure hardening for electric power networks. We employ a hybrid economic input–output life-cycle analysis (EIO-LCA) model to capture: construction costs and life-cycle emissions for transitioning from the current electric power network configuration to a hardened network configuration; construction costs and life-cycle emissions associated with wetland restoration; and the intrinsic value of wetland restoration. Uncertainty is accounted for probabilistically through a Monte Carlo hurricane simulation model and parametric sensitivity analysis for the number of hurricanes expected to impact the project area during the project cycle and the rate of wetland storm surge attenuation. Our analysis robustly indicates that wetland restoration and undergrounding of electric power network infrastructure is not preferred to the “do-nothing” option of keeping all power lines overhead without wetland protection. However, we suggest a few items for future investigation. For example, our results suggest that, for the small case study developed, synergistic benefits of simultaneously hardening infrastructure and restoring wetlands may be limited, although research using a larger test bed while integrating additional costs may find an enhanced value of wetland restoration for disaster loss mitigation.  相似文献   
106.
A Central-European nowcasting system which has been developed for use in mountainous terrain is tested in the Whistler/Vancouver area as part of the SNOW-V10 experiment. The integrated nowcasting through comprehensive analysis system provides hourly updated gridded forecasts of temperature, humidity, and wind, as well as precipitation forecasts which are updated every 15 min. It is based on numerical weather prediction (NWP) output and real-time surface weather station and radar data. Verification of temperature, relative humidity, and wind against surface stations shows that forecast errors are significantly reduced in the nowcasting range compared to those of the driving NWP model. The main contribution to the improvement comes from the implicit bias correction due to use of the latest observations. Relative humidity shows the longest lasting effect, with >50 % reduction of mean absolute error up to +4 h. For temperature and wind speed this percentage is reached after +2 and +3 h, respectively. Two cases of precipitation nowcasting are discussed and verified qualitatively.  相似文献   
107.
For agriculture, there are three major options for mitigating greenhouse gas (GHG) emissions: 1) productivity improvements, particularly in the livestock sector; 2) dedicated technical mitigation measures; and 3) human dietary changes. The aim of the paper is to estimate long-term agricultural GHG emissions, under different mitigation scenarios, and to relate them to the emissions space compatible with the 2 °C temperature target. Our estimates include emissions up to 2070 from agricultural soils, manure management, enteric fermentation and paddy rice fields, and are based on IPCC Tier 2 methodology. We find that baseline agricultural CO2-equivalent emissions (using Global Warming Potentials with a 100 year time horizon) will be approximately 13 Gton CO2eq/year in 2070, compared to 7.1 Gton CO2eq/year 2000. However, if faster growth in livestock productivity is combined with dedicated technical mitigation measures, emissions may be kept to 7.7 Gton CO2eq/year in 2070. If structural changes in human diets are included, emissions may be reduced further, to 3–5 Gton CO2eq/year in 2070. The total annual emissions for meeting the 2 °C target with a chance above 50 % is in the order of 13 Gton CO2eq/year or less in 2070, for all sectors combined. We conclude that reduced ruminant meat and dairy consumption will be indispensable for reaching the 2 °C target with a high probability, unless unprecedented advances in technology take place.  相似文献   
108.
Multitemporal remote sensing provides a unique tool to track lake dynamics at the pan-Arctic scale but requires precise registration of thousands of satellite images. This is a challenging task owing to a dearth of stable features to be used as tie points [(TPs), i.e., control points] in the dynamic landscapes. This letter develops an automated method to precisely register images in the lake-rich Arctic. The core premise of the method is that the centers of lakes are generally stable even if their shorelines are not. The proposed procedures first extract lakes in multitemporal satellite images, derive lake centroids and match them between images, and then use the centroids of stable lakes as TPs for image registration. The results show that this approach can achieve subpixel registration accuracy, outcompeting the conventional manual methods in both efficiency and accuracy. The proposed method is fully automated and represents a feasible way to register images for lake change detection at the pan-Arctic scale.   相似文献   
109.
110.
The study of climate impacts on Living Marine Resources (LMRs) has increased rapidly in recent years with the availability of climate model simulations contributed to the assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Collaboration between climate and LMR scientists and shared understanding of critical challenges for such applications are essential for developing robust projections of climate impacts on LMRs. This paper assesses present approaches for generating projections of climate impacts on LMRs using IPCC-class climate models, recommends practices that should be followed for these applications, and identifies priority developments that could improve current projections. Understanding of the climate system and its representation within climate models has progressed to a point where many climate model outputs can now be used effectively to make LMR projections. However, uncertainty in climate model projections (particularly biases and inter-model spread at regional to local scales), coarse climate model resolution, and the uncertainty and potential complexity of the mechanisms underlying the response of LMRs to climate limit the robustness and precision of LMR projections. A variety of techniques including the analysis of multi-model ensembles, bias corrections, and statistical and dynamical downscaling can ameliorate some limitations, though the assumptions underlying these approaches and the sensitivity of results to their application must be assessed for each application. Developments in LMR science that could improve current projections of climate impacts on LMRs include improved understanding of the multi-scale mechanisms that link climate and LMRs and better representations of these mechanisms within more holistic LMR models. These developments require a strong baseline of field and laboratory observations including long time series and measurements over the broad range of spatial and temporal scales over which LMRs and climate interact. Priority developments for IPCC-class climate models include improved model accuracy (particularly at regional and local scales), inter-annual to decadal-scale predictions, and the continued development of earth system models capable of simulating the evolution of both the physical climate system and biosphere. Efforts to address these issues should occur in parallel and be informed by the continued application of existing climate and LMR models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号