首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69928篇
  免费   818篇
  国内免费   647篇
测绘学   1841篇
大气科学   4774篇
地球物理   13199篇
地质学   27424篇
海洋学   5498篇
天文学   15282篇
综合类   259篇
自然地理   3116篇
  2021年   451篇
  2020年   504篇
  2019年   522篇
  2018年   3854篇
  2017年   3596篇
  2016年   2772篇
  2015年   888篇
  2014年   1376篇
  2013年   2521篇
  2012年   2436篇
  2011年   4413篇
  2010年   3941篇
  2009年   4714篇
  2008年   3841篇
  2007年   4378篇
  2006年   1983篇
  2005年   1924篇
  2004年   1816篇
  2003年   1781篇
  2002年   1564篇
  2001年   1207篇
  2000年   1172篇
  1999年   976篇
  1998年   983篇
  1997年   948篇
  1996年   819篇
  1995年   810篇
  1994年   719篇
  1993年   611篇
  1992年   562篇
  1991年   586篇
  1990年   649篇
  1989年   574篇
  1988年   507篇
  1987年   675篇
  1986年   538篇
  1985年   666篇
  1984年   751篇
  1983年   720篇
  1982年   636篇
  1981年   675篇
  1980年   562篇
  1979年   515篇
  1978年   503篇
  1977年   479篇
  1976年   467篇
  1975年   447篇
  1974年   424篇
  1973年   461篇
  1972年   283篇
排序方式: 共有10000条查询结果,搜索用时 60 毫秒
991.
This article reports a preliminary work in which two site specific seasonal algorithms have been proposed for estimating the suspended sediments concentration (SSC) from the digital numbers recorded on Indian Remote sensing Satellite, IRS-P4 Ocean Colour Monitor (OCM) sensor. For estimation of SSC, the proposed algorithms utilize dark pixel deduction atmospheric correction technique. The computations are performed with respect to north east monsoon phase situations of Palk Strait coastal stretch. The algorithms performance was satisfactory during the north east monsoon period. Although the results obtained cannot be generalized, we suggest that the authority of proposed algorithms can be extended to other seasons with the addition of more temporal experimental validation data sets and with numeric constants adjusted to present existing conditions. (As this area was severely affected by Tsunami, it may have dissimilar conditions at present).  相似文献   
992.
Spaceborne Imaging Radar (SIR-C) data acquired over Gujarat, India in 1994 were processed and analysed using differnet techniques applicable to polarimetric SAR data such as polarization signatures, polarization index, decomposition of the signal and polarization phase difference and limited groundtruth data. It has been observed that multi-frequency polarimetric data enhances the potential of retrieving geo-physical parameters. The polarization signatures are found to vary with the nature of the target. Target decomposition of the returned signal will be useful for the classification of various features. Polarization Phase Difference (PPD) gives good information about the vegetation parameters.  相似文献   
993.
994.
We propose a methodology for local gravity field modelling from gravity data using spherical radial basis functions. The methodology comprises two steps: in step 1, gravity data (gravity anomalies and/or gravity disturbances) are used to estimate the disturbing potential using least-squares techniques. The latter is represented as a linear combination of spherical radial basis functions (SRBFs). A data-adaptive strategy is used to select the optimal number, location, and depths of the SRBFs using generalized cross validation. Variance component estimation is used to determine the optimal regularization parameter and to properly weight the different data sets. In the second step, the gravimetric height anomalies are combined with observed differences between global positioning system (GPS) ellipsoidal heights and normal heights. The data combination is written as the solution of a Cauchy boundary-value problem for the Laplace equation. This allows removal of the non-uniqueness of the problem of local gravity field modelling from terrestrial gravity data. At the same time, existing systematic distortions in the gravimetric and geometric height anomalies are also absorbed into the combination. The approach is used to compute a height reference surface for the Netherlands. The solution is compared with NLGEO2004, the official Dutch height reference surface, which has been computed using the same data but a Stokes-based approach with kernel modification and a geometric six-parameter “corrector surface” to fit the gravimetric solution to the GPS-levelling points. A direct comparison of both height reference surfaces shows an RMS difference of 0.6 cm; the maximum difference is 2.1 cm. A test at independent GPS-levelling control points, confirms that our solution is in no way inferior to NLGEO2004.  相似文献   
995.
Through each of two known points on the ellipsoid a geodesic is passing in a known azimuth. We solve the problem of intersection of the two geodesics. The solution for the latitude is obtained as a closed formula for the sphere plus a small correction, of the order of the eccentricity of the ellipsoid, which is determined by numerical integration. The solution is iterative. Once the latitude is obtained, the longitude is determined without iteration.  相似文献   
996.
A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) . The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.  相似文献   
997.
Spin rate estimation of sounding rockets using GPS wind-up   总被引:2,自引:1,他引:1  
Carrier phase wind-up is a well-known effect that arises from the relative rotation between a transmitting and receiving antenna. In GPS measurements at L1 frequency, this effect translates into an error of 19.029 cm per full relative rotation of antennas. Since this effect is independent of the satellite elevation for pure rotation about the antenna boresight axis, it is usually absorbed by the clock estimation in navigation algorithms. Therefore, the impact of wind-up is usually neglected for applications that do not require accuracies to the cm level like RTK. However, in receiving platforms with high rotation rate, the accumulated wind-up value can be important and actually be larger than receiver noise or even ionospheric variations. Therefore, in such scenarios, the wind-up contribution can be isolated and used as a source of information to compute the spin rate of such platforms using an appropriate combination of GPS observables. This work shows some results of a coarse, yet simple, approach to monitor the rotation angle and spin-rate of spin stabilized sounding rockets flown by DLR.  相似文献   
998.
Using GPS multipath to measure soil moisture fluctuations: initial results   总被引:13,自引:2,他引:11  
Measurements of soil moisture are important for studies of climate and weather forecasting, flood prediction, and aquifer recharge studies. Although soil moisture measurement networks exist, most are sparsely distributed and lack standardized instrumentation. Measurements of soil moisture from satellites have extremely large spatial footprints (40–60 km). A methodology is described here that uses existing networks of continuously-operating GPS receivers to measure soil moisture fluctuations. In this technique, incoming signals are reflected off and attenuated by the ground before reception by the GPS receiver. These multipath reflections directly affect signal-to-noise ratio (SNR) data routinely collected by GPS receivers, creating amplitude variations that are a function of ground reflectivity and therefore soil moisture content. After describing this technique, multipath reflection amplitudes at a GPS site in Tashkent, Uzbekistan are compared to estimates of soil moisture from the Noah land surface model. Although the GPS multipath amplitudes and the land surface model are uncalibrated, over the 70-day period studied, they both rise sharply following each rainfall event and slowly decrease over a period of ∼10 days.  相似文献   
999.
This paper presents a simple and effective approach that incorporates single-frequency, L1 time-differenced GPS carrier phase (TDCP) measurements without the need of ambiguity resolution techniques and the complexity to accommodate the delayed-state terms. Static trial results are included to illustrate the stochastic characteristics and effectiveness of the TDCP measurements in controlling position error growth. The formulation of the TDCP observation model is also described in a 17-state tightly-coupled GPS/INS iterative, extended Kalman filter (IEKF) approach. Preliminary land vehicle trial results are also presented to illustrate the effectiveness of the TDCP which provides sub-meter positional accuracies when operating for more than 10 min.  相似文献   
1000.
On the Use of CloudSat and MODIS Data for Estimating Hurricane Intensity   总被引:2,自引:0,他引:2  
This letter presents preliminary results concerning the use of new observations from the A-Train Constellation for testing a new technique of remotely sensing hurricane intensity from space based on modeling a hurricane as a balanced, convectively neutral vortex. The key observational requirements are simultaneous, accurate measurements of cloud-top height, cloudtop temperature, and cloud profiling information across the center of the storm, although there are ways to bypass the need for cloud-top temperature. In this letter, the Moderate Resolution Imaging Spectroradiometer onboard Aqua provides an estimation of the cloud-top temperature, and the near-simultaneous CloudSat observations provide the essential cloud-top height and cloud profiling information. Initial results indicate that the new technique is a promising method for estimating storm intensity when compared post facto to the best track database. Potential uncertainties and room for further refinement of the technique are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号