首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
地球物理   22篇
地质学   4篇
  2018年   1篇
  2016年   1篇
  2010年   3篇
  2008年   2篇
  2006年   2篇
  2004年   3篇
  2003年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有26条查询结果,搜索用时 0 毫秒
11.
—The pulse width of the initial P wave was measured for three clusters of the aftershock sequence of the Patras (5.4 M S ?) July 1993 earthquake. The data set consists of pulse width measure ments of 250 microearthquakes recorded at a low-noise station of the University of Patras Seismological Network between 4-7-1993 and 1-8-1993. The statistical relation between the fault length and the earthquake magnitude was established for each one of the three clusters and is compared with other published relations. The relation also, between seismic moment and fault length was examined and showed a dependence upon the prevailing tectonic regime.  相似文献   
12.
Twenty six sites were instrumented in the city of Vartholomio following the December 2, 2002 Ms 6.0 earthquake. Thirty weak events from the aftershock sequence as well as microtremors were used to identify amplifications due to geological site effects. Horizontal-to-vertical spectral ratios (HVSR—Nakamura estimates) and weak events ratios were calculated and the singular spectrum analysis (SSA) method was used. The results showed that the effects of SSA on the stability of the frequency peak and amplitude distribution of HVSR for both weak motion and microtremors. The data analysis confirms the role of near surface geology in causing locally significant variations of the predominant frequencies and amplitudes of ground shaking as already inferred from the distribution of damages. The site response spectra exhibited significant peaks within the range of 1.5–2.6 Hz and the amplification factor did not exceed 6.5. Finally the parts of the HVSR ratios from ~0.2 up to 10 Hz were used, in order to create an automatic optimal zonation of the study area using a genetic algorithm. This procedure resulted in the division of the city into 2 main zones.  相似文献   
13.
Strong ground acceleration seismic hazard in Greece and neighboring regions   总被引:1,自引:0,他引:1  
In an early paper [Tectonophysics 117 (1985) 259] seismic hazard in Greece was analyzed using a relatively homogeneous earthquake catalogue spanning 1900–1978 and a strong motion attenuation relationship adapted to use in Greece. Improved seismic hazard analyses are obtained here using Gumbel's asymptotic extreme value distribution applied to peak horizontal ground acceleration occurrence, but now taking into account the increased length and quality of earthquake catalogue data spanning 1900–1999 and the burgeoning information on earthquake strong motion data and attenuation relationships appropriate for Europe and, explicitly, Greece. Seismic acceleration hazard results tabulated for six cities reveal (e.g. using arbitrarily the 50-year p.g.a. with 90% probability of not being exceeded) changes of about 10% in the new calculated values: two cities show an increase and four a decrease. These are relatively small and reassuring adjustments.Inspection of the available attenuation relationships leads to a preference for the models of Theodulidis and Papazachos, particularly with the model modification to produce a ‘stiff soil’ site relationship, as these relationships explicitly exploit the Greek strong motion database. Isoacceleration maps are produced for Greece as a whole from each attenuation relationship inspected. The final set of maps based on the Theodulidis and Papazachos models provide a foundation for comparison with the Seismic Hazard Zones adopted in the New Greek Seismic Code where scope can be found to modify zone shape and the level at which p.g.a.s are set. It should be noted that the generation of the present isoacceleration maps is based on a seismogenic zone-free methodology, independent of any Euclidean zoning assumptions.  相似文献   
14.
15.
Teleseismic long-period P waves from the June 20, 1978, Thessaloniki (N. Greece) earthquake (M s=6.4) were modeled in an attempt to extract information about asperities or barriers on the fault plane. The analysis is based on the inversion method of complex P waves developed by Kikuchi and Kanamori (1982). A far-field source time function with a rise time of 2 sec and a process time of 5 sec is inferred, corresponding to a source dimension of about 10 km when a rupture velocity of 2 km/sec is assumed.The source depth of this shock, estimated by matching synthetic seismograms to observations, is found to be 8 km. The sum of the seismic moments of the individual subevents amounts to 3.3×1025 dyn-cm.  相似文献   
16.
Although all of the main properties of a ground motion cannot be captured through a single parameter, a number of different engineering parameters has been proposed that are able to reflect either one or more ground‐motion characteristics concurrently. For many of these parameters, especially regarding Greece, there are relatively few or no predictive models. In this context, we present a set of new regionally‐calibrated equations for the prediction of the geometric mean of the horizontal components of 10 amplitude‐, frequency response‐, and duration‐based parameters for shallow crustal earthquakes. These equations supersede previous empirical relationships for Greece since their applicability range for magnitude, and epicentral distance has been extended down to Mw 4 and up to 200 km, respectively, the incorporation of a term accounting for anelastic attenuation has been investigated, while their development was based on a ground‐motion dataset spanning from 1973 to 2014. For all ground‐motion parameters, we provide alternative optimal equations relative to the availability of information on the different explanatory variables. In all velocity‐based and contrary to the acceleration‐based parameters, the anelastic attenuation coefficient was found statistically insignificant when it was combined with the geometric decay and the coefficient accounting for saturation with distance. In the regressions where the geometric decay coefficient simultaneously incorporated the contribution of anelastic attenuation, its increase was found to be much less considerable in the velocity‐based than in the acceleration‐based parameters, implying a stronger effect of anelastic attenuation on the parameters that are defined via the acceleration time history.  相似文献   
17.
18.
The western part of the Corinth Gulf attracts attention because of its seismically active complex fault system and considerable seismic hazard. Close to the city of Aegion, damaged by the M L 6.2 earthquake of 1995, a sequence of small earthquakes occurred from February to May 2001. The sequence, comprising 171 events of M L 1.8 to 4.7, was recorded by a short-period network of the University of Patras, PATNET. As most stations have single component-recording, the S-wave arrival time readings were scarce. A sub-set of 139 events was recorded by at least 5 stations, and in this study we limit ourselves just to that sub-set. A preliminary location is performed by a standard linearized kinematic approach, with several starting depths and crustal models. Then the mainshock is re-located, and finally it is used as a master event to locate the remaining events. The mainshock relocation is performed by a systematic 3D grid search, and the trade-off between depth and origin time is eliminated by a special procedure, the so-called station difference (SD) method. In the SD method, instead of inverting arrival times directly, their intra-station differences are employed. The station corrections, determined from the master event, are also used. As a result, the sub-set is imaged as a relatively tight cluster, occupying space of about 5 by 5 km horizontally and 10 km vertically, with the mainshock inside (at a depth of 7 km). The results should be interpreted with caution, mainly as regards the absolute depth position of the cluster. A more accurate location would require a local network with both P and S readings.  相似文献   
19.
We present the results of a tomographic study performed in the framework of the 3F-Corinth project. The aim of this work is to better understand the rifting process by imaging the crustal structure of the western Gulf of Corinth. Forty-nine stations were deployed for a period of six months, allowing us to monitor the microseismicity. Delayed P and S first-arrival times have been simultaneously inverted for both hypocenter locations and 3-D velocity distributions. We use an improved linearized tomography method based on an accurate finite-difference travel-time computation to invert the data set. The obtained Vp and Vs models confirm the presence of a two-layer vertical structure characterized by a sharp velocity gradient lying at 5–7 km depth, which may be interpreted as a lithological contrast. The shallower part of the crust (down to 5 km depth) is controlled by the N-S extension and lacks seismicity. The deeper part (7–13 km depth) matches the seismogenic zone and is characterized by faster and more heterogeneous anomalies. In this zone, the background seismicity reveals a low-angle active surface dipping about 20° toward the north and striking WNW-ESE. The position of this active structure is consistent with both high Vp/Vs and low Vp.Vs anomalies identified at 8–12 km depth and suggesting a highly fracturated and fluid-saturated zone. Both the geometry of the active structure beneath the gulf and the presence of fluids at 8–12 km depth are in accordance with a low-angle detachment model for the western part of the Gulf of Corinth. S. Gautier and D. Latorre formerly at Géosciences Azur  相似文献   
20.
An analysis is presented of the accumulation of stress along the North Anatolian fault. The analysis is based on the time-dependent reloading of the plate boundary by using a modified Elsasser model of a coupled lithosphere-asthenosphere system.It is found that many of the North Anatolian fault earthquakes are likely to have been triggered by adjacent ruptures, while the time intervals between large earthquakes may have been partly modulated by the relaxation of the viscoelastic asthenosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号