首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   2篇
测绘学   2篇
大气科学   7篇
地球物理   13篇
地质学   24篇
海洋学   6篇
天文学   4篇
自然地理   2篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   5篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   2篇
  1983年   2篇
  1979年   1篇
  1974年   1篇
  1966年   1篇
  1964年   1篇
  1956年   1篇
排序方式: 共有58条查询结果,搜索用时 78 毫秒
31.
32.
Organotin compounds (OTs) including mono- to tri-butyltins, -phenyltins, and -octyltins were determined in the liver of adult sea otters (Enhydra lutris) found dead along the coasts of California, Washington, and Alaska in the USA and Kamchatka, Russia. Total concentrations of OTs in sea otters from California ranged from 34 to 4100ng/g on a wet weight basis. The order of concentrations of OTs in sea otters was total butyltins>total octyltins> or = total phenyltins. Elevated concentrations of butyltins (BTs) were found in some otters classified under 'infectious-disease' mortality category. Concentrations of BTs in few of these otters were close to or above the threshold levels for adverse health effects. Total butyltin concentrations decreased significantly in the livers of California sea otters since the 1990s. Based on the concentrations of organotins in sea otters collected from 1992 to 2002, the half-lives of tributyltin and total butyltins in sea otters were estimated to be approximately three years.  相似文献   
33.
Lower Cretaceous lacustrine oil shales are widely distributed in southeastern Mongolia. Due to the high organic carbon content of oil shale, many geochemical studies and petroleum exploration have been conducted. Although most of the oil shales are considered to be Early Cretaceous in age, a recent study reveals that some were deposited in the Middle Jurassic. The present study aims at establishing depositional ages and characteristics of the Jurassic and Cretaceous lacustrine deposits in Mongolia. The Lower Cretaceous Shinekhudag Formation is about 250 m thick and composed of alternating beds of shale and dolomite. The Middle Jurassic Eedemt Formation is about 150 m thick and composed of alternating beds of shale, dolomitic marl, and siltstone. The alternations of shale and dolomite in both formations were formed by lake level changes, reflecting precipitation changes. Shales were deposited in the center of a deep lake during highstand, while dolomites were formed by primary precipitation during lowstand. Based on the radiometric age dating, the Shinekhudag Formation was deposited between 123.8 ±2.0 Ma and 118.5 ±0.9 Ma of the early Aptian. The Eedemt Formation was deposited at around 165–158 Ma of Callovian–Oxfordian. The calculated sedimentation rate of the Shinekhudag Formation is between 4.7 ±2.6 cm/ky and 10.0 ±7.6 cm/ky. Shales in the Shinekhudag Formation show micrometer‐scale lamination, consisting of algal organic matter and detrital clay mineral couplets. Given the average thickness of micro‐laminae and calculated sedimentation rate, the micro‐lamination is most likely of varve origin. Both Middle–Upper Jurassic and Lower Cretaceous lacustrine oil shales were deposited in intracontinental basins in the paleo‐Asian continent. Tectonic processes and basin evolution basically controlled the deposition of these oil shales. In addition, enhanced precipitation under humid climate during the early Aptian and the Callovian–Oxfordian was another key factor inducing the widespread oil shale deposition in Mongolia.  相似文献   
34.

When a subduction-zone earthquake occurs, the tsunami height must be predicted to cope with the damage generated by the tsunami. Therefore, tsunami height prediction methods have been studied using simulation data acquired by large-scale calculations. In this research, we consider the existence of a nonlinear power law relationship between the water pressure gauge data observed by the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) and the coastal tsunami height. Using this relationship, we propose a nonlinear parametric model and conduct a prediction experiment to compare the accuracy of the proposed method with those of previous methods and implement particular improvements to the extrapolation accuracy.

  相似文献   
35.
We used more than 25,000 nutrient samples to elucidate for the first time basin-scale distributions and seasonal changes of surface ammonium (NH4 +) and nitrite (NO2 ?) concentrations in the Pacific Ocean. The highest NH4 +, NO2 ?, and nitrate (NO3 ?) concentrations were observed north of 40°N, in the coastal upwelling region off the coast of Mexico, and in the Tasman Sea. NH4 + concentrations were elevated during May–October in the western subarctic North Pacific, May–December in the eastern subarctic North Pacific, and June–September in the subtropical South Pacific. NO2 ? concentrations were highest in winter in both hemispheres. The seasonal cycle of NH4 + was synchronous with NO2 ?, NO3 ?, and satellite chlorophyll a concentrations in the western subtropical South Pacific, whereas it was synchronous with chlorophyll-a but out of phase with NO2 ? and NO3 ? in the subarctic regions.  相似文献   
36.
FeO*‐Al2O3‐TiO2‐rich rocks are found associated with transitional tholeiitic lava flows in the Tertiary Bana plutono‐volcanic complex in the continental sector of the Cameroon Line. These peculiar rocks consist principally of iron‐titanium oxides, aluminosilicates and phosphates, and occur as layers 1–3 m thick occupying the upper part of lava flows on the southwest (site 1) and northwest (site 2) sites of the complex. Mineral constituents of the rocks include magnetite, ilmenite, hematite, rutile, corundum, andalusite, sillimanite, cordierite, quartz, plagioclase, alkali feldspar, apatite, Fe‐Mn phosphate, Al phosphate, micas and fine mixtures of sericite and silica. Texturally and compositionally, the rocks can be subdivided into globular type, banded type, and Al‐rich fine‐gained massive type. The first two types consist of dark globule or band enriched in Fe‐Ti oxides and apatite and lighter colored groundmass or bands enriched in aluminosilicates and quartz, respectively. The occurrence of andalusite and sillimanite and the compositional relations of magnetite and ilmenite in the FeO*‐Al2O3‐TiO2‐rich rocks suggest temperatures of crystallization in a range of 690–830°C at low pressures. The Bana FeO*‐Al2O3‐TiO2‐rich rocks are characterized by low concentrations of SiO2 (25–54.2 wt%), Na2O + K2O (0–1%), CaO (0–2%) and MgO (0–0.5%), and high concentrations of FeO* (total iron as FeO, 20–42%), Al2O3 (20–42%), TiO2 (3–9.2%), and P2O5 (0.26–1.30%). TiO2 is positively correlated with Al2O3 and inversely correlated with FeO*. The bulk rock compositions cannot be derived from the associated basaltic magma by crystal fractionation or by partial melting of the mantle or lower crustal materials. In ternary diagrams of (Al2O3)?(CaO + Na2O + K2O)?(FeO*+ MnO + MgO) and (SiO2)?(FeO*)?(Al2O3), the compositional field of the rocks is close to that of laterite and is distinct from the common volcanic rocks, suggesting that the rocks are derived from lateritic materials by recrystallization when the materials are heated by the basaltic magmas. A hydrothermal origin is discounted because the rocks contain high‐temperature mineral assemblages and lack sulfide minerals. It is proposed that the FeO*‐Al2O3‐TiO2‐rich rocks of the Bana complex were formed by pyrometamorphism of laterite by the heat of basaltic magmas.  相似文献   
37.
Carrier phase measurements are primary observations for GPS attitude determination. Although the satellite-related errors can be virtually eliminated by forming single differences, the baseline-related errors such as line biases are still present in the single-differenced carrier phase measurements. It is, therefore, difficult to resolve the single-differenced integer ambiguities due to the line biases. By forming double differences, the line biases of the single-differenced carrier phase measurements can be effectively removed. However, the main disadvantages of this method lie in the fact that the double-differenced measurements are mathematically correlated and consequently the attitude obtained from the double differences is noisy. This paper presents a new algorithm through which both single and double differences are used simultaneously to resolve these problems in real-time. The solution of the integer ambiguities can be obtained by searching for the most likely grid point in the attitude domain that is independent of the correlation with the double differences. Next, the line biases and corresponding single difference integer ambiguities can be resolved on the fly by using the noisy attitude solution obtained from the previous double difference procedure. In addition, the relationship between the physical signal path difference and the line bias is formed. A new method is also applied to derive the attitude angles through finding the optimal solution of the attitude matrix element. The proposed new procedure is validated using ground and flight tests. Results have demonstrated that the new algorithm is effective and can satisfy the requirement of real-time applications.  相似文献   
38.
39.
Abstract This paper describes the results of petrographical and meso- to microstructural observations of brittle fault rocks in cores obtained by drilling through the Nojima Fault at a drilling depth of 389.52 m. The zonation of deformation and alteration in the central zone of the fault is clearly seen in cores of granite from the hanging wall, in the following order: (i) host rock, which is characterized by some intragranular microcracks and in situ alteration of mafic minerals and feldspars; (ii) weakly deformed and altered rocks, which are characterized by transgranular cracks and the dissolution of mafic minerals, and by the precipitation of zeolites and iron hydroxide materials; (iii) random fabric fault breccia, which is characterized by fragmentation, by anastomosing networks of transgranular cracks, and by the precipitation of zeolites and iron hydroxide materials; and (iv) fault gouge, which is characterized by the precipitation of smectite and localized cataclastic flow. This zonation implies that the fault has been weakened gradually by fluid-related fracturing over time. In the footwall, a gouge layer measuring only 15 mm thick is present just below the surface of the Nojima Fault. These observations are the basis for a model of fluid behavior along the Nojima Fault. The model invokes the percolation of meteoric fluids through cracks in the hanging wall fault zone during interseismic periods, resulting in chemical reactions in the fault gouge layer to form smectite. The low permeability clay-rich gouge layer sealed the footwall. The fault gouge was brecciated during coseismic or postseismic periods, breaking the seal and allowing fluids to readily flow into the footwall, thus causing a slight alteration. Chemical reactions between fluids and the fault breccia and gouge generated new fault gouge, which resealed the footwall, resulting in a low fluid condition in the footwall during interseismic periods.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号