首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2806篇
  免费   457篇
  国内免费   649篇
测绘学   187篇
大气科学   529篇
地球物理   654篇
地质学   1549篇
海洋学   306篇
天文学   156篇
综合类   287篇
自然地理   244篇
  2024年   15篇
  2023年   29篇
  2022年   111篇
  2021年   127篇
  2020年   99篇
  2019年   101篇
  2018年   154篇
  2017年   117篇
  2016年   140篇
  2015年   134篇
  2014年   153篇
  2013年   124篇
  2012年   147篇
  2011年   142篇
  2010年   150篇
  2009年   128篇
  2008年   137篇
  2007年   141篇
  2006年   98篇
  2005年   119篇
  2004年   85篇
  2003年   116篇
  2002年   117篇
  2001年   110篇
  2000年   116篇
  1999年   159篇
  1998年   93篇
  1997年   111篇
  1996年   113篇
  1995年   92篇
  1994年   70篇
  1993年   73篇
  1992年   64篇
  1991年   36篇
  1990年   41篇
  1989年   32篇
  1988年   23篇
  1987年   19篇
  1986年   18篇
  1985年   9篇
  1984年   10篇
  1983年   6篇
  1982年   14篇
  1981年   3篇
  1980年   6篇
  1979年   4篇
  1978年   2篇
  1966年   1篇
  1964年   1篇
  1958年   2篇
排序方式: 共有3912条查询结果,搜索用时 15 毫秒
991.
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90°E is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2 ± 1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1 ± 0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8 ± 1.3 mm/a in the central part of Altun fault and 9.8 ± 2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   
992.
昆仑多岛弧盆系及泛华夏大陆的增生   总被引:9,自引:1,他引:9  
自从Rodinia超大陆在晚元古代解体之后,冈瓦纳大陆群与泛华夏大陆群间从晚元古代至中生代始终存在一大洋-特提斯洋。从早古生代至中生代,特提斯洋分三个阶段向泛华夏陆块群俯冲,形成了弧后扩张、弧陆碰撞和弧前增生。弧后盆地扩张到达小洋盆,出现蛇绿混杂岩。由于早期大陆边缘已向南发生了增生,继后的弧后扩张和前锋弧的位置也就相应地向南迁移了。因而蛇绿岩带、岩浆岩带会出现多条,且从北向南时代有从老变新的趋势。由于陆缘向南裂离,并到达高纬度位置,或者如洋岛的生成,随着洋壳的消减速、俯冲,高纬度的沉积体向低纬度的不断增生,这样就出现了生物的冷暖型混生。且从泛华夏陆块群或从冈瓦纳大陆群裂离的块体不能越过大洋中脊拼合在另一大陆块体上。因此,泛华夏大陆的西南缘-昆仑带只是在弧后海底扩张、弧-弧碰撞、弧-陆碰撞的多岛弧造山作用、向南不断增生过程中形成的。  相似文献   
993.
1999~2002年地震预报研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
回顾了中国在1999~2002年开展地震预测、预报研究的进展. 重点回顾了在此期间利用地震学、形变、电磁、流体和综合5类学科方法开展中短期地震预报研究的成果,以及这些成果在地震预报实践中的探索性应用.   相似文献   
994.
美国生产的SMA—1强震仪在我国的应用较为广泛,因使用多年,故障率逐年递增。从仪器的工作原理入手,简略介绍了常见故障的维修和仪器的改进方法。改进的仪器,经三年多的考验,运行正常。  相似文献   
995.
永胜6.0级地震的破坏特征及分析   总被引:1,自引:2,他引:1  
介绍了永胜6.0级地震震区的自然概况、震害分布及特征,分析了各种破坏产生的机理,提出了震区在恢复重建与规划发展时的建议以及各类建(构)筑物加强抗震的措施。  相似文献   
996.
郭春丽  吴福元 《地学前缘》2003,10(2):327-334
沉积岩沉积作用准确时间的厘定是目前同位素年代学研究中的一大难题 ,尽管目前可采用多种方法对成岩过程中的自生矿物进行定年 ,但由于技术上的原因 ,这项研究一直发展很慢。文中详细介绍了近年来发展起来的运用高精度离子探针 (SHRIMP)技术确定自生磷钇矿形成年龄 ,进而确定沉积作用年代的新方法。如 ,澳大利亚西北部Kimberley盆地中未变质的古元古代砂岩中自生磷钇矿的SHRIMP定年将成岩作用限定在 7Ma的误差范围之内。相比之下 ,对非洲南部太古宙Witwa tersrand超群和澳大利亚西南部MountBarren群绿片岩相变质砂岩中磷钇矿的研究 ,不仅确定了所研究岩石的成岩作用时代 ,而且恢复了该区后期的复杂热演化历史。研究还表明 ,这种方法同样适用于显生宙岩石。这些实例表明 ,磷钇矿的SHRIMP定年不仅可以测定从太古宙到第四系所有年代碎屑沉积岩的沉积时代 ,而且可以实现极小尺度上的微区定年 ,从而可以研究岩石自沉积成岩以后的演化历史 ,显示这一方法在沉积作用及相关热事件问题研究上的巨大潜力。  相似文献   
997.
通过构造裂缝形成的力学机制分析,应用弹性理论、有限单元法和岩石破坏准则等,对朝阳沟油田双30—2区块扶I层应力裂缝发育区进行预测,旨在判断裂缝性油藏区。结果表明,预测结果与现场钻探取样结果符合较好,从而为该区下一步布井和注水提供了依据。  相似文献   
998.
A combined oxygen‐isotope and fluid‐inclusion study has been carried out on high‐ and ultrahigh‐pressure metamorphic (HP/UHPM) eclogites and garnet clinopyroxenite from the Dabie‐Sulu terranes in eastern China. Coesite‐bearing eclogites/garnet clinopyroxenite and quartz eclogites have a wide range in whole‐rock δ18OVSMOW, from 0 to 11‰. The high‐T oxygen‐isotope fractionations preserved between quartz and garnet preclude significant retrograde isotope exchange during exhumation, and the wide range in whole‐rock oxygen‐isotope composition is thought to be a presubduction signature of the precursors. Aqueous fluids with variable salinities and gas species (N2‐, CO2‐, or CH4‐rich), are trapped as primary inclusions in garnet, omphacite and epidote, and in quartz blebs enclosed within eclogitic minerals. In high‐δ18O HP/UHPM rocks from Hujialin and Shima, high‐salinity brine and/or N2 inclusions occur in garnet porphyroblasts, which also contain inclusions of coesite, Cl‐rich blue amphibole and dolomite. In contrast, in low‐δ18O eclogites from Qinglongshan and Huangzhen, the Cl concentrations in amphibole are very low, < 0.2 wt.%, and low‐salinity aqueous inclusions occur in quartz inclusions in epidote porphyroblasts and in epidote cores. These low‐salinity fluid inclusions are believed to be remnants of meteoric water, although the fluid composition was modified during pre‐ and syn‐peak HP/UHPM. Eclogites at Houshuichegou and Hetang contain CH4‐rich fluid inclusions, coexisting with high‐salinity brine inclusions. Methane was probably formed under the influence of CO2‐rich aqueous fluids during serpentinisation of mantle‐derived peridotites prior to or during plate subduction. Remnants of premetamorphic low‐ to high‐salinity aqueous fluid with minor N2 and/or other gas species preserved in the Dabie‐Sulu HP/UHPM eclogites and garnet clinopyroxenite indicate a great diversity of initial fluid composition in the precursors, implying very limited fluid–rock interaction during syn‐ and post‐peak HP/UHPM.  相似文献   
999.
Abstract. The Liwu Cu‐rich sulfide deposit occurs within the Jianglang dome in the eastern margin of the Tibetan plateau. The dome consists of a core, a middle slab and a cover sequence. The main deposit is hosted in the core with minor ore bodies in the middle slab. The protolith of the core consists of clastic sedimentary rocks with inter‐layered volcanic rocks. All of the ore bodies are substantially controlled by an extensional detachment fault system. The ore bodies within the core are distributed along the S2 foliation in the hinge of recumbent fold (D2), whereas ore bodies with en echelon arrangement are controlled by the mylonitic foliation of the lower detachment fault. Ore bodies within the middle slab are oriented with their axes parallel to the mylonitic foliation. Pyrite and pyrrhotite from the ores contain Co ranging from 37 to 1985 ppm, Ni from 2.5 to 28.1 ppm, and Co/Ni ratios from 5 to 71. These sulfides have δ34S values ranging from 1.5 to 7.5 % whereas quartz separates have δ18O values of 11.9 and 14.3 % and inclusion fluid in quartz has δD value of‐88.1 %. These features suggest that the deposit was of hydrothermal origin. Two ore‐forming stages are recognized in the evolution of the Jianglang dome. (1) A low‐temperature ore‐forming process, during the tectonic transport of the upper plate above the lower detachment, and the initial phase of the footwall updom‐ing at 192–177 Ma. (2) A medium‐temperature ore‐forming stage, related to the final structural development of the initial detachment at 131–81Ma. Within the core, the ore bodies of the first stage were uplifted to, or near, the brittle/ductile horizon where the ore‐forming metals were re‐concentrated and enriched. A denudation stage in which a compressional tectonic event produced eastward thrusting overprinted the previous structures, and finally denuded the deposit. The Liwu Cu‐rich sulfide deposit was formed during a regional extensional tectonic event and is defined as a tectono‐strata‐bound hydrothermal ore deposit.  相似文献   
1000.
Quaternary folding of the eastern Tian Shan, northwest China   总被引:3,自引:0,他引:3  
The Tian Shan, east–west trending more than 2000 km, is one of most active intracontinental mountain building belts that resulted from India–Eurasia collision during Cenozoic. In this study, Quaternary folding related to intracontinental mountain building of the Tian Shan orogenic belt is documented based on geologic interpretation and analyses of the satellite remote sensing images [Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM) and India Remote Sensing (IRS) Pan] combined with field geologic and geomorphic observations and seismic reflection profiles. Analyses of spatial–temporal features of Quaternary folded structure indicate that the early Quaternary folds are widely distributed in both piedmont and intermontane basins, whereas the late Quaternary active folds are mainly concentrated on the northern range-fronts. Field observations indicate that Quaternary folds are mainly characterized by fault-related folding. The formation and migration of Quaternary folding are likely related to decollement surfaces beneath the fold-and-fault zone as revealed by seismic reflection profiles. Moreover, analysis of growth strata indicates that the Quaternary folding began in late stage of early Pleistocene (2.1–1.2 Ma). Finally, tectonic evolution model of the Quaternary deformation in the Tian Shan is presented. This model shows that the Quaternary folding and faulting gradually migrate toward the range-fronts due to the continuous compression related to India–Eurasia collision during Quaternary time. As a result, the high topographic relief of the Tian Shan was formed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号