首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26800篇
  免费   473篇
  国内免费   333篇
测绘学   769篇
大气科学   1947篇
地球物理   5110篇
地质学   9326篇
海洋学   2403篇
天文学   6558篇
综合类   62篇
自然地理   1431篇
  2021年   213篇
  2020年   253篇
  2019年   313篇
  2018年   636篇
  2017年   612篇
  2016年   763篇
  2015年   429篇
  2014年   738篇
  2013年   1365篇
  2012年   848篇
  2011年   1108篇
  2010年   1022篇
  2009年   1362篇
  2008年   1202篇
  2007年   1245篇
  2006年   1198篇
  2005年   920篇
  2004年   885篇
  2003年   806篇
  2002年   765篇
  2001年   651篇
  2000年   675篇
  1999年   589篇
  1998年   578篇
  1997年   542篇
  1996年   414篇
  1995年   413篇
  1994年   426篇
  1993年   329篇
  1992年   323篇
  1991年   270篇
  1990年   322篇
  1989年   275篇
  1988年   265篇
  1987年   286篇
  1986年   248篇
  1985年   330篇
  1984年   351篇
  1983年   351篇
  1982年   329篇
  1981年   263篇
  1980年   279篇
  1979年   224篇
  1978年   215篇
  1977年   223篇
  1976年   193篇
  1975年   197篇
  1974年   182篇
  1973年   182篇
  1972年   129篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This paper presents a single‐domain boundary element method (BEM) for linear elastic fracture mechanics analysis in the two‐dimensional anisotropic material. In this formulation, the displacement integral equation is collocated on the un‐cracked boundary only, and the traction integral equation is collocated on one side of the crack surface only. A special crack‐tip element was introduced to capture exactly the crack‐tip behavior. A computer program with the FORTRAN language has been developed to effectively calculate the stress intensity factors of an anisotropic material. This BEM program has been verified having a good accuracy with the previous researches. Furthermore, by analyzing the different anisotropic degree cracks in a finite plate, we found that the stress intensity factors of crack tips had apparent influence by the geometry forms of cracks and media with different anisotropic degrees. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
992.
This paper advocates the use of a multiphase model, already developed for static or quasi‐static geotechnical engineering problems, for simulating the behaviour of piled raft foundations subject to horizontal as well as rocking dynamic solicitations. It is shown that such a model, implemented in a FEM code, yields appropriate predictions for the foundation impedance characteristics, provided that shear and bending effects in the piles are taken into account, thus corroborating the findings of the asymptotic homogenization theory. Besides, it is notably pointed out that such a multiphase‐based computational tool makes it possible to assess the dynamic behaviour of pile groups in a much quicker way than when using direct numerical simulations, which may face oversized problems when large pile groups are concerned. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
993.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
994.
995.
Gimli beach in Manitoba is one of the lowest elevation beaches in the southern Lake Agassiz basin, and is a distinct ridge composed of bedded sand and gravel that rises above the lake plain and extends for more than 40 km. Ten new optically stimulated luminescence (OSL) ages from Gimli beach yield ages mostly ranging from 9.7 ± 0.7 to 10.5 ± 0.8 ka (average 10.3 ± 0.5 ka), which is older by 0.6 to >1.0 ka than age estimates of previous researchers. Two of our new OSL ages are notably older than the others, dating to ~11.3 ± 0.8 and 13.9 ± 1.0 ka, which we attribute to poorly bleached sands. We ascribe an age of about 10 ka to Gimli beach, which is several centuries before overflow from Lake Agassiz and its vast drainage basin shifted from the western Great Lakes to glacial Lake Ojibway and the St. Lawrence Valley.  相似文献   
996.
Quartz-in-garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which the P–T conditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. The P–T results are coupled with in-situ Th–U-total Pb monazite dating, which records amphibolite facies metamorphism at c. 359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.  相似文献   
997.
998.
999.
Macropores are subsurface connected void spaces caused by processes such as fracture of soils, micro‐erosion, and fauna burrows. They are common near streams (e.g. hyporheic and riparian zones) and may act as preferential flow paths between surface and groundwaters, affecting hydrologic and biogeochemical processes. We tested the hydrologic function of macropores by constructing an artificial macropore within the saturated zone of a meander bend (open macropore, ‘OM’) and later filling its upstream end (partially filled macropore, ‘PFM’). For each treatment, we injected saline tracer at an upgradient monitoring well within the meander and monitored downgradient hydraulics and tracer transport. Pressure transducers in monitoring wells indicated hydraulic gradients within the meander were 32% higher perpendicular to and 6% higher parallel to the macropore for the OM than for the PFM. Additionally, hydraulic conductivities measured via falling head tests were 29 to 550 times higher along the macropore than in nearby sediment. We used electrical conductivity probes in wells and electrical resistivity imaging to track solute transport. Transport velocities through the meander were on average 9 and 21% higher (per temporal moment analysis and observed tracer peak, respectively) for the OM than for the PFM. Furthermore, temporal moments of tracer breakthrough analysis indicated downgradient longitudinal dispersion and breakthrough tracer curve tailing were on average 234% and 182% higher for the OM, respectively. This suggests the OM enabled solute transport at overall shorter timescales than the matrix but also increased tailing. Our results demonstrate the importance of macropores to meander bend hydrology and solute transport. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
1000.
Developing an appropriate data collection scheme to infer stream–subsurface interactions is not trivial due to the spatial and temporal variability of exchange flowpaths. Within the context of a case study, this paper presents the results from a number of common data collection techniques ranging from point to reach scales used in combination to better understand the spatial complexity of subsurface exchanges, infer the hydrologic conditions where individual influences of hyporheic and groundwater exchange components on stream water can be characterized, and determine where gaps in information arise. We start with a tracer‐based, longitudinal channel water balance to quantify hydrologic gains and losses at a sub‐reach scale nested within two consecutive reaches. Next, we look at groundwater and stream water surface levels, shallow streambed vertical head gradients, streambed and aquifer hydraulic conductivities, water chemistry, and vertical flux rates estimated from streambed temperatures to provide more spatially explicit information. As a result, a clearer spatial understanding of gains and losses was provided, but some limitations in interpreting results were identified even when combining information collected over various scales. Due to spatial variability of exchanges and areas of mixing, each technique frequently captured a combination of groundwater and hyporheic exchange components. Ultimately, this study provides information regarding technique selection, emphasizes that care must be taken when interpreting results, and identifies the need to apply or develop more advanced methods for understanding subsurface exchanges. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号