首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1603篇
  免费   41篇
  国内免费   23篇
测绘学   53篇
大气科学   159篇
地球物理   280篇
地质学   622篇
海洋学   124篇
天文学   289篇
综合类   11篇
自然地理   129篇
  2023年   9篇
  2021年   17篇
  2020年   17篇
  2019年   17篇
  2018年   34篇
  2017年   28篇
  2016年   40篇
  2015年   25篇
  2014年   44篇
  2013年   70篇
  2012年   55篇
  2011年   74篇
  2010年   74篇
  2009年   117篇
  2008年   78篇
  2007年   98篇
  2006年   77篇
  2005年   87篇
  2004年   53篇
  2003年   48篇
  2002年   53篇
  2001年   41篇
  2000年   41篇
  1999年   29篇
  1998年   28篇
  1997年   21篇
  1996年   21篇
  1995年   19篇
  1994年   21篇
  1993年   16篇
  1992年   15篇
  1991年   14篇
  1990年   14篇
  1988年   12篇
  1986年   11篇
  1985年   15篇
  1984年   13篇
  1983年   22篇
  1982年   16篇
  1981年   15篇
  1980年   12篇
  1979年   9篇
  1978年   9篇
  1977年   8篇
  1976年   15篇
  1975年   8篇
  1973年   15篇
  1972年   15篇
  1971年   11篇
  1970年   9篇
排序方式: 共有1667条查询结果,搜索用时 15 毫秒
121.
The Sawayaerdun gold deposit, located in Wuqia County, Southwest Tianshan, China, occurs in Upper Silurian and Lower Devonian low‐grade metamorphic carbonaceous turbidites. The orebodies are controlled by a series of NE‐NNE‐trending, brittle–ductile shear zones. Twenty‐four gold mineralized zones have been recognized in the Sawayaerdun ore deposit. Among these, the up to 4‐km‐long and 200‐m wide No. IV mineralized zone is economically the most important. The average gold grade is 1–6 g/t. Gold reserves of the Sawayaerdun deposit have been identified at approximately 37 tonnes and an inferred resource of 123 tonnes. Hydrothermal alteration is characterized by silicification, pyritization, arsenopyritization, sericitization, carbonatization and chloritization. On the basis of field evidence and petrographic analysis, five stages of vein emplacement and hydrothermal mineralization can be distinguished: stage 1, early quartz stage, characterized by the occurrence of quartz veins; stage 2, arsenopyrite–pyrite–quartz stage, characterized by the formation of auriferous quartz veinlets and stockworks; stage 3, polymetallic sulfide quartz stage, characterized by the presence of auriferous polymetallic sulfide quartz veinlets and stockworks; stage 4, antimony–quartz stage, characterized by the formation of stibnite–jamesonite quartz veins; and stage 5, quartz–carbonate vein stage. Stages 2 and 3 represent the main gold mineralization, with stage 4 representing a major antimony mineralization episode in the Sawayaerdun deposit. Two types of fluid inclusion, namely H2O–NaCl and H2O–CO2–NaCl types, have been recognized in quartz and calcite. Aqueous inclusions show a wide range of homogenization temperatures from 125 to 340°C, and can be correlated with the mineralization stage during which the inclusions formed. Similarly, salinities and densities of these fluids range for each stage of mineralization from 2.57 to 22 equivalent wt% NaCl and 0.76 to 1.05 g/cm3, respectively. The ore‐forming fluids thus are representative of a medium‐ to low‐temperature, low‐ to medium‐salinity H2O–NaCl–CO2–CH4–N2 system. The δ34SCDT values of sulfides associated with mineralization fall into a narrow range of ?3.0 to +2.6‰ with a mean of +0.1‰. The δ13CPDB values of dolomite and siderite from the Sawayaerdun gold deposit range from ?5.4 to ?0.6‰, possibly reflecting derivation of the carbonate carbon from a mixed magmatic/sedimentary source. Changes in physico‐chemical conditions and composition of the hydrothermal fluids, water–rock exchange and immiscibility of hydrothermal fluids are inferred to have played important roles in the ore‐forming process of the Sawayaerdun gold–antimony deposit.  相似文献   
122.
The consequences of overstepping the garnet isograd reaction have been investigated by comparing the composition of garnet formed at overstepped P–T conditions (the overstep or “OS” model) with the P–T conditions that would be inferred by assuming garnet nucleated in equilibrium with the matrix assemblage at the isograd (the equilibrium or “EQ” model). The garnet nucleus composition formed at overstepped conditions is calculated as the composition that produces the maximum decrease in Gibbs free energy from the equilibrated, garnet-absent, matrix assemblage for the bulk composition under study. Isopleths were then calculated for this garnet nucleus composition assuming equilibrium with the matrix assemblage (the EQ model). Comparison of the actual P–T conditions of nucleation (the OS model) with those inferred from the EQ model reveals considerable discrepancy between the two. In general, the inferred garnet nucleation P–T conditions (the EQ model) are at a lower temperature and higher or lower pressure (depending on the coexisting calcic phase(s)) than the actual (OS model) nucleation conditions. Moreover, the degree of discrepancy increases with the degree of overstepping. Independent estimates of the pressure of nucleation of garnet were made using the Raman shift of quartz inclusions in garnet (quartz-in-garnet or QuiG barometry). To test the validity of this method, an experimental synthesis of garnet containing quartz inclusions was made at 800 °C, 20 kbar, and the measured Raman shift reproduced the synthesis conditions to within 120 bars. Raman band shifts from three natural samples were then used to calculate an isochore along which garnet was presumed to have nucleated. Model calculations were made at several temperatures along this isochore (the OS model), and these P–T conditions were compared to those computed assuming equilibrium nucleation (the EQ model) to estimate the degree of overstepping displayed by these samples. A sample from the garnet isograd in eastern Vermont is consistent with overstepping of around 10 degrees and 0.6 kbar (affinities of around 2 kJ/mole garnet). A sample from the staurolite–kyanite zone in the same terrane requires overstepping of around 50 °C and 2–5 kbar (affinities of around 10–18 kJ/mole garnet). A similar amount of overstepping was inferred for a blueschist sample from Sifnos, Greece. These results indicate that overstepping of garnet nucleation reactions may be common and pronounced in regionally metamorphosed terranes, and that the P–T conditions and paths inferred from garnet zoning studies may be egregiously in error.  相似文献   
123.
Marks  Danny  Thomalla  Frank 《Natural Hazards》2017,87(2):1147-1165
Natural Hazards - The 2011 flood was the worst in Thailand in decades. Many of the impacts occurred in the Bangkok Metropolitan Region. The floods negatively affected small and medium enterprises...  相似文献   
124.
The advent in satellite altimetry with the most accurate satellite radar altimeter since 1992 and its successive missions have enabled the routine global monitoring of water-level (or stage) for surface waters and changes in the quantities of dammed water reservoirs. However, satellite altimeter measurements typically have spatial resolution capable of observing only large water bodies, such as major lakes and rivers. This paper addresses the challenges of how to investigate water levels in medium (~?1 km in width) to small (~?100 m and narrower) rivers. Comparisons between the ENVISAT altimetry ICE-1 waveform retracking height and standard water-level measurements for multiple sections of Ohio River, Columbia River, and Red River of the North in the United States (US) reveals that the satellite altimetry measured water levels agree well with those observed at nearby US Geological Survey gaging stations over the 10-year period starting from 2002. The significant results include those obtained at Thompson, North Dakota (ND, correlation coefficient or R value of 0.76 between satellite and in situ water-level measurements) and Fargo, ND (R?=?0.74), where the stream channels of Red River are merely?~?50 m and ~?40 m wide, respectively, under normal climatic conditions. In addition, demonstrations of the approach over largely inaccessible portions of Tigris–Euphrates Rivers and Helmand River in the Middle East aided in understanding hydrology in these systems. This study demonstrates the ability of satellite radar altimetry to characterize rivers in these study regions which are much narrower than 100 m in width.  相似文献   
125.
A global atmosphere–ocean model has been forced with topographic and orbital scenarios in order to evaluate the relative role of both factors for the past climate of East Africa. Forcing the model with a significantly reduced topography in Eastern and Southern Africa leads to a distinct increase in moisture transport from the Indian Ocean into the eastern part of the continent and increased precipitation in Eastern Africa. Simulations with step-wise reduced height show that this climate change occurs continuously with the change in topography, i.e., an abrupt change of local climatic features with a critical height is not found. Simulations of the last interglacial (at 125,000 years before present, i.e., the Eemian interglacial) and the last glacial inception (at 115,000 years before present) are used as examples for the role of orbital-induced changes in insolation. Here, changes in meridional temperature gradients lead to modifications in moisture transport of similar order of magnitude, but with different spatial and seasonal structure. For the Eemian interglacial, a distinct increase in summer moisture transport from the Atlantic deep into the continent at around 20°N is simulated.  相似文献   
126.
Summary An induced anisotropy of magnetic susceptibility results from the domain alignment which is produced by treating stationary specimens in a strong alternating field. Appreciable domain re-orientation occurs in fields as low as 50 oersteds and the effect must therefore normally be an important part of the process of alternating field demagnetization. Induced anisotropy has been measured in a number of igneous rocks with a range of palaeomagnetic stabilities and in magnetite powders of controlled grain sizes, dispersed in plaster or kaolin specimens which were mechanically deformed to produce instrinsic magnetic anisotropy by grain alignment. The saturation magnitude of the induced anisotropy is not a function of grain size but the saturating field required increases with decreasing grain size. In the larger grains, induced anisotropy is a function of grain orientation.  相似文献   
127.
128.
This study presents a reconstruction of the tectonic history of an Upper Rotliegend tight gas field in Northern Germany. Tectonism of the greater study area was influenced by multiple phases of salt movement, which produced a variety of salt-related structural features such as salt walls, salt diapirs as well as salt glaciers (namakiers). A sequential 2D retro-deformation and stratal backstripping methodology was used to differentiate mechanisms inducing salt movement and to discuss their relation to regional tectonics. The quantitative geometric restoration included sedimentary balancing, decompaction, fault-related deformation, salt movement, thermal subsidence, and isostasy to unravel the post-depositional tectonic overprint of the Rotliegend reservoir rock. The results of this study indicate that reactive salt diapirism started during an Early Triassic interval of thin-skinned extensional tectonics, followed by an active diapirism stage with an overburden salt piercement in the Late Triassic, and finally a period of intensive salt surface extrusion and the formation of salt glaciers (namakiers) in Late Triassic and Jurassic times. Since the Early Cretaceous, salt in the study area has been rising by passive diapirism.  相似文献   
129.
Quartz-in-garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which the P–T conditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. The P–T results are coupled with in-situ Th–U-total Pb monazite dating, which records amphibolite facies metamorphism at c. 359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.  相似文献   
130.
The Gemmi fault is a prominent NW–SE striking lineament that crosses the Gemmi Pass in the central Swiss Alps. A multidisciplinary investigation of this structure that included geological mapping, joint profiling, cathodoluminescence and scanning electron microscopy, stable isotope measurements, luminescence- and U-TH-dating, 3D ground penetrating radar (GPR) surveying and trenching reveals a history of fault movements from the Miocene to the Holocene. The main fault zone comprises a 0.5–3 m thick calcite cataclasite formed during several cycles of veining and brittle deformation. Displaced Cretaceous rock layers show an apparent dextral slip of 10 m along the fault.A detailed study of a small sediment-filled depression that crosses the fault provides evidence for a post-glacial reactivation of the fault. A trench excavated across the fault exposed a Late-Glacial-age loess layer and late Holocene colluvial-like slope-wash deposits that showed evidence for fault displacement of a few centimeters, indicating a recent strike-slip reactivation of the fault. Focal mechanisms of recent instrumentally recorded earthquakes are consistent with our findings that show that the fault at the Gemmi Pass, together with other parallel faults in this area, may be reactivated in today's stress field. Taking together all the observations of its ancient and recent activity, the Gemmi fault can be viewed as a window through geological space and time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号