首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   8篇
  国内免费   4篇
测绘学   2篇
大气科学   9篇
地球物理   54篇
地质学   58篇
海洋学   14篇
天文学   40篇
自然地理   5篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   14篇
  2012年   11篇
  2011年   17篇
  2010年   13篇
  2009年   13篇
  2008年   9篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   4篇
  2003年   4篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有182条查询结果,搜索用时 163 毫秒
121.
In light of the July 9, 1997, Cariaco earthquake, it is clearly understood now that damage in the city of Cumaná – located in northeastern Venezuela and frequently destroyed by the largest earthquakes since the first recorded event in 1530 – is strongly enhanced by poor soil conditions that, in turn, are responsible for site amplification and widespread earthquake-induced effects. Therefore, most previous macroseismic studies of historical earthquakes must be revaluated because those localized high-intensity values at Cumaná surely led to the misestimation of past epicenters. Preliminary paleoseismic results, gathered at three exploratory trenches dug across the surface break of the Cariaco 1997 earthquake in 1998, allow us to associate the 1684 earthquake with this recently ruptured fault segment that extends between the towns of San Antonio del Golfo and Río Casanay (roughly between the two gulfs of Cariaco and Paria, state of Sucre). Other major results from the reassessment of the seismic history of this fault are: (a) the 1766 event seems to have generated in a different source to the El Pilar fault because the size of the felt area suggests that it is an intermediate-depth earthquake; (b) damage to Cumaná produced by the 1797 event suggests that this was a local earthquake, perhaps equivalent to the 1929 earthquake, which ruptured for some 30 km just east of Cumaná into the Gulf of Cariaco; and (c) seismogenic association of the 1530 and 1853 earthquakes still remains unclear but it is very likely that these ruptures occurred offshore, as suggested by the rather large tsunami waves that both events have generated, placing their hypocenters west of Cumaná in the Cariaco Trough. This reassessment also sheds light into the El Pilar fault segmentation and the behavior of its seismogenic barriers through time.  相似文献   
122.
Mt. Semeru, the highest mountain in Java (3,676 m), is one of the few persistently active composite volcanoes on Earth, with a plain supporting about 1 million people. We present the geology of the edifice, review its historical eruptive activity, and assess hazards posed by the current activity, highlighting the lahar threat. The composite andesite cone of Semeru results from the growth of two edifices: the Mahameru ‘old’ Semeru and the Seloko ‘young’ Semeru. On the SE flank of the summit cone, a N130-trending scar, branched on the active Jonggring-Seloko vent, is the current pathway for rockslides and pyroclastic flows produced by dome growth. The eruptive activity, recorded since 1818, shows three styles: (1) The persistent vulcanian and phreatomagmatic regime consists of short-lived eruption columns several times a day; (2) increase in activity every 5 to 7 years produces several kilometer-high eruption columns, ballistic bombs and thick tephra fall around the vent, and ash fall 40 km downwind. Dome extrusion in the vent and subsequent collapses produce block-and-ash flows that travel toward the SE as far as 11 km from the summit; and (3) flank lava flows erupted on the lower SE and E flanks in 1895 and in 1941–1942. Pyroclastic flows recur every 5 years on average while large-scale lahars exceeding 5 million m3 each have occurred at least five times since 1884. Lumajang, a city home to 85,000 people located 35 km E of the summit, was devastated by lahars in 1909. In 2000, the catchment of the Curah Lengkong River on the ESE flank shows an annual sediment yield of 2.7 × 105 m3 km−2 and a denudation rate of 4 105 t km−2 yr−1, comparable with values reported at other active composite cones in wet environment. Unlike catchments affected by high magnitude eruptions, sediment yield at Mt. Semeru, however, does not decline drastically within the first post-eruption years. This is due to the daily supply of pyroclastic debris shed over the summit cone, which is remobilised by runoff during the rainy season. Three hazard-prone areas are delineated at Mt. Semeru: (1) a triangle-shaped area open toward the SE has been frequently swept by dome-collapse avalanches and pyroclastic flows; (2) the S and SE valleys convey tens of rain-triggered lahars each year within a distance of 20 km toward the ring plain; (3) valleys 25 km S, SE, and the ring plain 35 km E toward Lumajang can be affected by debris avalanches and debris flows if the steep-sided summit cone fails.  相似文献   
123.
The biologically damaging solar ultraviolet (UV) radiation (quantified by the DNA-weighted dose) reaches the martian surface in extremely high levels. Searching for potentially habitable UV-protected environments on Mars, we considered the polar ice caps that consist of a seasonally varying CO2 ice cover and a permanent H2O ice layer. It was found that, though the CO2 ice is insufficient by itself to screen the UV radiation, at approximately 1 m depth within the perennial H2O ice the DNA-weighted dose is reduced to terrestrial levels. This depth depends strongly on the optical properties of the H2O ice layers (for instance snow-like layers). The Earth-like DNA-weighted dose and Photosynthetically Active Radiation (PAR) requirements were used to define the upper and lower limits of the northern and southern polar Radiative Habitable Zone (RHZ) for which a temporal and spatial mapping was performed. Based on these studies we conclude that photosynthetic life might be possible within the ice layers of the polar regions. The thickness varies along each martian polar spring and summer between approximately 1.5 and 2.4 m for H2O ice-like layers, and a few centimeters for snow-like covers. These martian Earth-like radiative habitable environments may be primary targets for future martian astrobiological missions. Special attention should be paid to planetary protection, since the polar RHZ may also be subject to terrestrial contamination by probes.  相似文献   
124.
The well-known dichotomy in topography, surface age, and crustal structure between the northern lowlands and the southern uplands of Mars has been explained by both endogenic and exogenic processes. According to the used model this asymmetry might be a result of a certain mechanism of core fommation influencing the following planetary evolution. Therefore it has been assumed that the present internal structure of Mars is characterized by different velocity-depth distributions of the mantle for the northern and southern hemisphere, respectively. For both regions significant differences in travel times of seismic waves were calculated. These results may be important for the future seismic exploration of Mars.  相似文献   
125.
The paper gives a new explanation of Saturn's large heat output.  相似文献   
126.
Understanding the way fluids flow in fault zones is of prime importance to develop correct models of earthquake mechanics, especially in the case of the abnormally weak San Andreas Fault (SAF) system. Because fluid flow can leave detectable signatures in rocks, geochemistry is essential to bring light on this topic. The present detailed study combines, for the first time, C–O isotope analyses with a comprehensive trace element data set to examine the geometry of fluid flow within a significant fault system hosted by a carbonate sequence, from a single locality across the Little Pine Fault–SAF system. Such a fault zone contains veins, deformation zones, and their host rocks. Stable isotope geochemistry is used to establish a relative scale of integrated fluid–rock ratios. Carbonate δ18O varies between 28‰ and 15‰ and δ13C between 5‰ and −7‰. From highest to lowest delta values, thus from least to most infiltrated, are the host rocks, the vein fillings, and the deformation zone fillings, respectively. Infiltration increases toward fault core. The fluids are H2O–CO2 mixtures. Two fluid sources, one internal and the other external, are found. The external fluid is inferred to come essentially from metamorphism of the Franciscan formation underneath. The internal (local) fluid is provided by a 30% volume reduction of the host limestones resulting from pressure solution and pore size reduction. Most trace elements, including the lanthanides, show enrichment at the 100-m scale in host carbonate rocks as fluid–rock ratios increase toward the fault core. In contrast, the same trace element concentrations are low, relative to host rocks, in veins and deformation zone carbonate fillings, and this difference in concentration increases as fluid–rock ratio increases toward the fault core. We suggest that the fluid trace elements are scavenged by complexation with organic matter in the host rocks. Elemental complexation is especially illustrated by large fractionation of Y–Ho and Nb–Ta geochemical pairs. Complexation associated with external fluid flow has a significant effect on trace element enrichment (up to 700% relative enrichment) while concentration by pressure solution associated with volume decrease of host rocks has a more limited effect (up to 40% relative enrichment). Our observations from the millimeter to the kilometer scale call for the partitioning of fluid sources and pathways, and for a mixed focused–pervasive fluid flow mechanism. The fluid mainly flows within veins and deformation zones and, simultaneously, within at least 10 cm from these channels, part of the fluid flows pervasively in the host rock, which controls the fluid composition. Scavenging of the fluid rare earth elements (REE) by host rocks is responsible for the formation of REE-depleted vein and deformation zone carbonate fillings. Fluid flow is not only restricted to veins or deformation zones as commonly believed. An important part of fluid flow takes place in host rocks near fault zones. Hence, the nature of the lithologies hosting fault zones must be considered in order to take into account the role of fluids in the seismic cycle.  相似文献   
127.
128.
During the seymama expedition of the French R/V Marion Dufresne in the equatorial Indian Ocean, we retrieved giant piston cores (30–53 m long) as part of a high resolution palaeo-oceanographic and stratigraphic study of Pliocene-Pleistocene pelagic carbonates. Major changes in the compressional wave (P wave) velocity profiles recorded in these cores appear to be correlatable from the Madingley Rise (western equatorial Indian Ocean) to the southeast of the Maldives archipelago (central equatorial Indian Ocean), about 1700 km away, thus emphasizing the stratigraphic potential of acoustic records in uncemented pelagic carbonates.

As expected in deep-sea carbonate deposits, changes in P-wave velocity parallel past changes in coarse fraction content (> 63 μm). Changes in grain size appear to be mainly controlled by carbonate dissolution, as evidenced by a strong relationship between sand content and a foraminifer preservation index. Thus, in uncemented pelagic carbonates, P-wave velocities provide quick and easy to obtain qualitative information on carbonate dissolution pulses. As diagenesis takes place, however, compaction and cementation change the dynamic rigidity (μ) of the sediments and may conceal the original grain size signal.

Due to the strong positive relationship between P-wave velocity and coarse fraction content in uncemented pelagic carbonates, P-wave velocity profiles can be tied to a precise chronologic framework by correlating them to the composite grain size index curve (CGSI) established by Bassinot et al. for the tropical Indian Ocean [1,2]. This composite curve has been constructed by stacking the normalized coarse fraction records from ODP Site 722 (Owen Ridge, Arabian Sea [3]) and ODP Site 758 (Ninetyeast Ridge, central equatorial Indian Ocean [4]). In these two sites, detailed δ18O records provide the basis for precise inter-site correlations. They ensure the accuracy of the stacking procedure, which tends to reduce most of the local grain size signals and enhances the regional signal related to carbonate dissolution pulses [1,2]. A detailed chronostratigraphy of CGSI curve was developed by correlating the δ18O records of Sites 722 and 758 to the orbital chronology recently developed from ODP Site 677 [5]. The CGSI may be used as a reference curve for developing a sonostratigraphy in the tropical Indian Ocean.  相似文献   

129.
ABSTRACT

Establishing reliable elevation differences is imperative for most geoscience and engineering applications. This work has traditionally been accomplished through spirit leveling techniques; however, surveyors have been utilizing satellite positioning systems in measuring height differences for more than a decade. Yet the quality of these heights needs to be evaluated in order to adopt them in different applications. In this article, we present the outcome of an accuracy assessment of height differences obtained with static and RTK surveys. Twenty control points with an average baseline length of 1?km were occupied with dual-frequency GNSS receivers for different time periods. Collected signals were processed using open-source software and verified with an online processing tool. Heights were estimated by processing the GPS and the GLONASS data individually, and combined (i.e. GNSS). Height differences were determined and compared with those measured by spirit levels and corrected through geoid models. Best results were achieved by combining GPS and GLONASS solutions for both static and RTK surveys. Solutions with either GPS or GLONASS satellites were comparable, but in most cases, the GPS solutions performed better. For the static surveys, longer occupation provided much accurate height differences. Inconsistencies among 10 different RTK surveys were minimum for the GPS?+?GLONASS solutions and worst for the GLONASS solutions. The ANOVA, LSD, F, and χ² statistical tests confirmed our findings at the 95% confidence level.  相似文献   
130.
 Previous detailed studies of large rhyolite bodies propose that their elemental and isotopic characteristics were largely acquired in shallow crustal magma chambers. This model explains the common chemical and isotopic zonations of large volumes of rhyolites as well as the less common chemical and isotopic homogeneity of such bodies. We report an intermediate situation (the Estérel massif, southeast France) in which chemical variations contrast with Nd-isotope homogeneity. We thus infer that, in this case, large volumes of rhyolite resided for enough time in shallow magma chambers to develop chemical zonations through differentiation, but this process was not accompanied by crustal assimilation. The subordinate amount of mafic rocks cropping out in the Estérel probably evolved from basalt to trachyte through assimilation and fractional crystallization. The relatively radiogenic Nd-isotope signatures of the rhyolite compared with the Hercynian crust show that it cannot have been generated by partial melting of exposed basement rocks. Several geological similarities with large rhyolitic provinces could suggest that the rhyolite was purely mantle derived or, alternatively, generated by partial melting of an ad hoc crustal component. However, mineralogical, geochemical, and geodynamic connections between the Estérel rhyolite and the hypersolvus anorogenic granites of Corsica, as well as the extreme Nd-isotope homogeneity of the rhyolite, lead us to propose that the rhyolite was generated by mixing between mantle-derived magmas and a mafic lower crust. This scenario accounts for the relatively radiogenic Nd-isotope signatures of the rhyolite compared with the Hercynian crust. The good Nd-isotope homogeneity observed in the rhyolite implies that the mixing process, which occurred in the deep crust, was complete and provided a shallow magma chamber with isotopically and probably chemically homogeneous magmas. Received: 5 December 1997 / Accepted: 16 June 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号