首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2234篇
  免费   62篇
  国内免费   12篇
测绘学   55篇
大气科学   222篇
地球物理   438篇
地质学   675篇
海洋学   246篇
天文学   438篇
综合类   7篇
自然地理   227篇
  2021年   22篇
  2020年   17篇
  2019年   29篇
  2018年   30篇
  2017年   25篇
  2016年   59篇
  2015年   49篇
  2014年   39篇
  2013年   152篇
  2012年   70篇
  2011年   99篇
  2010年   58篇
  2009年   103篇
  2008年   95篇
  2007年   101篇
  2006年   103篇
  2005年   72篇
  2004年   74篇
  2003年   73篇
  2002年   75篇
  2001年   64篇
  2000年   42篇
  1999年   56篇
  1998年   45篇
  1997年   31篇
  1996年   26篇
  1995年   35篇
  1994年   21篇
  1993年   27篇
  1992年   25篇
  1991年   17篇
  1990年   29篇
  1989年   21篇
  1988年   21篇
  1987年   30篇
  1986年   17篇
  1985年   43篇
  1984年   43篇
  1983年   31篇
  1982年   23篇
  1981年   29篇
  1980年   19篇
  1979年   21篇
  1978年   32篇
  1977年   30篇
  1976年   20篇
  1975年   24篇
  1974年   29篇
  1973年   25篇
  1969年   13篇
排序方式: 共有2308条查询结果,搜索用时 0 毫秒
1.
A lacustrine carbonate sequence from Hawes Water, Lancashire, UK, has been studied using stable isotopic, lithological, pollen and mineral magnetic analysis. The data reveal four abrupt climatic oscillations in the Late‐glacial Interstadial leading up to the onset of the Loch Lomond Stadial. The data also point to climatic warming relatively early within the stadial, ca. 12 500 GRIP yr, prior to the onset of the Holocene. The oxygen isotope record is taken as a signature of climate forcing against which the response of the lake‐system can be monitored. By adopting this approach it is revealed that the response of the biological system to the rapid climatic oscillations is non‐linear and primarily a function of the antecedent conditions. A significant end‐Devensian isotopic excursion (A) is matched by only minor changes in the cold‐adapted floras and faunas. During the warmer interstadial, the response of the biological ecosystem (events B–D) is clearly influenced by thresholds: major changes in the catchment vegetation associated with relatively minor oscillations in the isotopic signature. The stratigraphical patterns reveal significant lag effects between the onset of climate deterioration and resulting changes in vegetation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
3.
4.
5.
6.
7.
8.
Three finite element codes, namely TELEMAC, ADCIRC and QUODDY, are used to compute the spatial distributions of the M2, M4 and M6 components of the tide in the sea region off the west coast of Britain. This region is chosen because there is an accurate topographic dataset in the area and detailed open boundary M2 tidal forcing for driving the model. In addition, accurate solutions (based upon comparisons with extensive observations) using uniform grid finite difference models forced with these open boundary data exist for comparison purposes. By using boundary forcing, bottom topography and bottom drag coefficients identical to those used in an earlier finite difference model, there is no danger of comparing finite element solutions for “untuned unoptimised solutions” with those from a “tuned optimised solution”. In addition, by placing the open boundary in all finite element calculations at the same location as that used in a previous finite difference model and using the same M2 tidal boundary forcing and water depths, a like with like comparison of solutions derived with the various finite element models was possible. In addition, this open boundary was well removed from the shallow water region, namely the eastern Irish Sea where the higher harmonics were generated. Since these are not included in the open boundary, forcing their generation was determined by physical processes within the models. Consequently, an inter-comparison of these higher harmonics generated by the various finite element codes gives some indication of the degree of variability in the solution particularly in coastal regions from one finite element model to another. Initial calculations using high-resolution near-shore topography in the eastern Irish Sea and including “wetting and drying” showed that M2 tidal amplitudes and phases in the region computed with TELEMAC were in good agreement with observations. The ADCIRC code gave amplitudes about 30 cm lower and phases about 8° higher. For the M4 tide, in the eastern Irish Sea amplitudes computed with TELEMAC were about 4 cm higher than ADCIRC on average, with phase differences of order 5°. For the M6 component, amplitudes and phases showed significant small-scale variability in the eastern Irish Sea, and no clear bias between the models could be found. Although setting a minimum water depth of 5 m in the near-shore region, hence removing wetting and drying, reduced the small-scale variability in the models, the differences in M2 and M4 tide between models remained. For M6, a significant reduction in variability occurred in the eastern Irish Sea when a minimum 5-m water depth was specified. In this case, TELEMAC gave amplitudes that were 1 cm higher and phases 30° lower than ADCIRC on average. For QUODDY in the eastern Irish Sea, average M2 tidal amplitudes were about 10 cm higher and phase 8° higher than those computed with TELEMAC. For M4, amplitudes were approximately 2 cm higher with phases of order 15° higher in the northern part of the region and 15° lower in the southern part. For M6 in the north of the region, amplitudes were 2 cm higher and about 2 cm lower in the south. Very rapid M6 tidal-phase changes occurred in the near-shore regions. The lessons learned from this model inter-comparison study are summarised in the final section of the paper. In addition, the problems of performing a detailed model–model inter-comparison are discussed, as are the enormous difficulties of conducting a true model skill assessment that would require detailed measurements of tidal boundary forcing, near-shore topography and precise knowledge of bed types and bed forms. Such data are at present not available.  相似文献   
9.
The entire width of the North American Cordillera in Alaska is made up of “suspect terranes”. Pre-Late Cretaceous paleogeography is poorly constrained and the ultimate origins of the many fragments which make up the state are unclear. The Prince William and Chugach terranes accreted since Late Cretaceous time and represent the collapse of much of the northeast Pacific Ocean swept into what today is southern Alaska. Greater Wrangellia, a composite terrane now dispersed into fragments scattered from Idaho to southern Alaska, apparently accreted into Alaska in Late Cretaceous time crushing an enormous deep-marine flysch basin on its inboard side. Most of interior eastern Alaska is the Yukon Tanana terrane, a very large entirely fault-bounded metamorphic-plutonic assemblage covering thousands of square kilometers in Canada as well as Alaska. The original stratigraphy and relationship to North America of the Yukon-Tanana terrane are both obscure. A collapsed Mesozoic flysch basin, similar to the one inboard of Wrangellia, lies along the northern margin. Much of Arctic Alaska was apparently a vast expanse of upper Paleozoic to Early Mesozoic deep marine sediments and mafic volcanic and plutonic rocks now scattered widely as large telescoped sheets and Klippen thrust over the Ruby geanticline and the Brooks Range, and probably underlying the Yukon-Koyukuk basin and the Yukon flats. The Brooks Range itself is a stack of north vergent nappes, the telescoping of which began in Early Cretaceous time. Despite compelling evidence for thousands of kilometers of relative displacement between the accreted terranes, and large amounts of telescoping, translation, and rotation since accretion, the resulting new continental crust added to North America in Alaska carries few obvious signatures that allow application of currently popular simple plate tectonic models. Intraplate telescoping and strike-slip translations, delamination at mid-crustal levels, and large-scale lithospheric wedging were important processes in northern Cordilleran tectonic evolution.  相似文献   
10.
There is little concensus on the relative importance of crystal fractionation and differential partial melting to the chemical diversity observed within most types of volcanic suites. A resolution to this controversy is best sought in suites containing high MgO lavas such as the Chukotat volcanics of the Proterozoic Cape Smith foldbelt, Ungava, Quebec. The succession of this volcanic suite consists of repetitive sequences, each beginning with olivine-phyric basalt (19-12 wt% MgO), grading upwards to pyroxene-phyric basalt (12-8 wt% MgO) and then, in later sequences, to plagioclase-phyric basalt (7-4 wt% MgO). Only the olivine-phyric basalts have compositions capable of equilibrating with the upper mantle and are believed to represent parental magmas for the suite. The pyroxene-phyric and plagioclase-phyric basalts represent magmas derived from these parents by the crystal fractionation of olivine, with minor chromite, clinopyroxene and plagioclase. The order of extrusion in each volcanic sequence is interpreted to reflect a density effect in which successively lighter, more evolved magmas are erupted as hydrostatic pressure wanes. The pyroxene-phyric basalts appear to have evolved at high levels in the active part of the conduit system as the eruption of their parents was in progress. The plagioclase-phyric basalts may represent residual liquids expelled from isolated reservoirs along the crust-mantle interface during the late stages of volcanic activity.A positive correlation between FeO and MgO in the early, most basic olivine-phyric basalts is interpreted to reflect progressive adiabatic partial melting in the upper mantle. Although this complicates the chemistry, it is not a significant factor in the compositional diversification of the volcanic suite. The preservation of such compositional melting effects, however, suggests that the most basic olivine-phyric basalts represent primitive magmas. The trace element characteristics of these magmas, and their derivatives, indicate that the mantle source for the Chukotat volcanics had experienced a previous melting event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号