首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   5篇
测绘学   3篇
大气科学   11篇
地球物理   28篇
地质学   84篇
海洋学   12篇
天文学   51篇
自然地理   22篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   7篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   8篇
  2012年   9篇
  2011年   6篇
  2010年   14篇
  2009年   8篇
  2008年   13篇
  2007年   13篇
  2006年   11篇
  2005年   5篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1996年   3篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1958年   1篇
  1954年   1篇
  1950年   1篇
排序方式: 共有211条查询结果,搜索用时 31 毫秒
91.
The origin of volcanism in the Canary Islands has been a matter of controversy for several decades. Discussions have hinged on whether the Canaries owe their origin to seafloor fractures associated with the Atlas Mountain range or to an underlying plume or hotspot of superheated mantle material. However, the debate has recently come to a conclusion following the discovery of nannofossils preserved in the products of the 2011–2012 submarine eruption at El Hierro, which tell us about the age and growth history of the western‐most island of the archipelago. Light coloured, pumice‐like ‘floating rocks’ were found on the sea surface during the first days of the eruption and have been shown to contain fragments of pre‐island sedimentary strata. These sedimentary rock fragments were picked up by ascending magma and transported to the surface during the eruption, and remarkably retained specimens of pre‐island Upper Cretaceous to Pliocene calcareous nannofossils (e.g. coccolithophores). These marine microorganisms are well known biostratigraphical markers and now provide crucial evidence that the westernmost and youngest island in the Canaries is underlain by the youngest sediment relative to the other islands in the archipelago. This finding supports an age progression for the onset of volcanism at the individual islands of the archipeligo. Importantly, as fracture‐related volcanism is known to produce non‐systematic age‐distributions within volcanic alignments, the now‐confirmed age progression corroberates to the relative motion of the African plate over an underlying mantle plume or hotspot as the cause for the present‐day Canary volcanism.  相似文献   
92.
Excavations in 1964 at the Pine Spring site in southwest Wyoming concluded that the site contains three cultural occupation levels; the earliest allegedly dates to the terminal Pleistocene and is associated with megafauna. However, excavations in 1998 and 2000, and analysis of the stratigraphy, AMS dates, micromorphology, and artifact carbonate isotopes, along with debitage refitting, density, orientation, inclination, burning, and trample damage, could not replicate the 1964 findings. A hiatus in deposition accounts for the highest density of artifacts, and the three original occupations are palimpsests. There is no unequivocal association between evidence of human activity and megafaunal remains. © 2006 Wiley Periodicals, Inc.  相似文献   
93.
Within the context of present and future in situ missions to Mars to investigate its habitability and to search for traces of life, we studied the habitability and traces of past life in ∼3.5 Ga-old volcanic sands deposited in littoral environments an analogue to Noachian environments on Mars. The environmental conditions on Noachian Mars (4.1-3.7 Ga) and the Early Archaean (4.0-3.3 Ga) Earth were, in many respects, similar: presence of liquid water, dense CO2 atmosphere, availability of carbon and bio-essential elements, and availability of energy. For this reason, information contained in Early Archaean terrestrial rocks concerning habitable conditions (on a microbial scale) and traces of past life are of relevance in defining strategies to be used to identify past habitats and past life on Mars.One such example is the 3.446 Ga-old Kitty’s Gap Chert in the Pilbara Craton, NW. Australia. This formation consists of volcanic sediments deposited in a coastal mudflat environment and is thus a relevant analogue for sediments deposited in shallow water environments on Noachian Mars. Two main types of habitat are represented, a volcanic (lithic) habitat and planar stabilized sediment surfaces in sunlit shallow waters. The sediments hosted small (<1 μm in size) microorganisms that formed colonies on volcanic particle surfaces and in pore waters within the volcanic sediments, as well as biofilms on stabilised sediment surfaces. The microorganisms included coccoids, filaments and rare rod-shaped organisms associated with microbial polymer (EPS). The preserved microbial community was apparently dominated by chemotrophic organisms but some locally transported filaments and filamentous mat fragments indicate that possibly photosynthetic mats formed nearby. Both microorganisms and sediments were silicified during very early diagenesis.There are no macroscopic traces of fossilised life in these volcanic sediments and sophisticated instrumentation and specialized sample preparation techniques are required to establish the biogenicity and syngenicity of the traces of past life. The fact that the traces of life are cryptic, and the necessity of using sophisticated instrumentation, reinforces the challenges and difficulties of in situ robotic missions to identify past life on Mars. We therefore recommend the return of samples from Mars to Earth for a definitive search for traces of life.  相似文献   
94.
We use the Hf isotope composition of zircon from the Bushveld Complex to better understand the source of its parent magmas. The data set, which consists of 141 individual LA-ICP-MS analyses from 11 samples encompassing the entire cumulate stratigraphy, shows that the parent magmas had a Hf isotope composition unlike that of the depleted mantle at 2.06 Ga. Specifically, sample average εHf(present) values range from ?55.3 to ?52.5 (εHf(2.06 Ga) = ?9.0 to ?6.8) and are surprisingly homogeneous. This homogeneity is difficult to reconcile with direct assimilation of crustal material by Bushveld parent magmas because it would require that each batch of magma had assimilated just the right amount of material to all acquire the same Hf isotopic composition. Also, calculations suggest that simple mixing of regional crust into a primitive, mantle-derived liquid cannot account for both the presumed Hf and major elemental concentrations and the 176Hf/177Hf ratio of the Bushveld magmas. Rather, the Hf data are consistent with generation of these magmas by partial melting in a sub-continental mantle lithospheric source with an unradiogenic Hf isotopic composition equal to that of the Bushveld parent magmas. Several possibilities for the development of such a source are explored using the new Hf isotope data.  相似文献   
95.
Thermodynamic analysis of equilibria between minerals (with regard for their compositions) in carbonatites of the Chagatai complex, Uzbekistan, provides us with the possibility of estimating the oxygen fugacity at which carbonates could occur in equilibrium with elementary carbon. Isotopic studies and thermodynamic simulations show that graphite started to crystallize at 775°C and an oxygen fugacity value approximately one logarithmic unit below the QFM buffer and continued to crystallize with further cooling, simultaneously with a decrease in the Ti concentration in the equilibrium magnetite. Graphite crystallized from carbonatite melt at higher temperatures and likely precipitated from hydrothermal fluid at lower temperatures. The composition of gas in equilibrium with graphite in the C-H-O system was calculated for oxygen fugacity values evaluated for the Chagatai carbonatites. Inasmuch as the values of oxygen potential are almost identical in graphite- and diamond-bearing carbonatites, the presence of graphite in carbonatite dikes and diatremes can be regarded as a prospecting guide in exploration for diamondiferous carbonatites.  相似文献   
96.
97.
High‐temperature gas in volcanic island arcs is widely considered to originate predominantly from the mantle wedge and from subducted sediments of the down‐going slab. Over the decade (1994–2005) prior to the 2006 eruption of Merapi volcano, summit fumarole CO2 gas δ13C ratios are relatively constant at ?4.1 ± 0.3‰. In contrast, CO2 samples taken during the 2006 eruption and after the May 26th 2006 Yogyakarta earthquake (M6.4) show a dramatic increase in carbon isotope ratios to ?2.4 ± 0.2‰. Directly following the earthquake (hypocentre depth 10–15 km), a 3–5‐fold increase in eruptive intensity was observed. The elevated carbon isotope gas data and the mid‐crustal depth of the earthquake source are consistent with crustal volatile components having been added during the 2006 events, most probably by the thick local limestone basement beneath Merapi. This ‘extra’ crustal gas likely played an important role in modifying the 2006 eruptive behaviour at Merapi and it appears that crustal volatiles are able to intensify and maintain eruptions independently of traditional magmatic recharge and fractionation processes.  相似文献   
98.
The Cassini Titan Radar mapper has observed elevated blocks and ridge-forming block chains on Saturn's moon Titan demonstrating high topography we term “mountains.” Summit flanks measured from the T3 (February 2005) and T8 (October 2005) flybys have a mean maximum slope of 37° and total elevations up to 1930 m as derived from a shape-from-shading model corrected for the probable effects of image resolution. Mountain peak morphologies and surrounding, diffuse blankets give evidence that erosion has acted upon these features, perhaps in the form of fluvial runoff. Possible formation mechanisms for these mountains include crustal compressional tectonism and upthrusting of blocks, extensional tectonism and formation of horst-and-graben, deposition as blocks of impact ejecta, or dissection and erosion of a preexisting layer of material. All above processes may be at work, given the diversity of geology evident across Titan's surface. Comparisons of mountain and blanket volumes and erosion rate estimates for Titan provide a typical mountain age as young as 20-100 million years.  相似文献   
99.
The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan.  相似文献   
100.
The reliability of modelling the far-infrared continuum to  13CO  J = 1 → 0  spectral line ratios applied to the Orion clouds (see previous paper in the series) on the scales of several parsecs (i.e. ∼7 pc) is tested by applying the models to simulated data. The two-component models are found to give the dust–gas temperature difference,  Δ T   , to within 1 or 2 K. However, other parameters like the column density per velocity interval and the gas density can be wrong by an order of magnitude or more. In particular, the density can be systematically underestimated by an order of magnitude or more. The overall mass of the clouds is estimated correctly to within a few per cent.
These results may permit us to reliably constrain estimates of the Orion clouds' physical parameters, based on the real observations of the far-infrared continuum and  13CO  J = 1 → 0  spectral line. Nevertheless, other systematics must be treated first. These include the effects of background/foreground subtraction, effects of the H  i component of the interstellar medium, and others. These will be discussed in a future paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号