首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   13篇
  国内免费   2篇
测绘学   3篇
大气科学   13篇
地球物理   78篇
地质学   107篇
海洋学   20篇
天文学   29篇
综合类   1篇
自然地理   21篇
  2021年   1篇
  2020年   11篇
  2019年   4篇
  2018年   12篇
  2017年   14篇
  2016年   14篇
  2015年   7篇
  2014年   10篇
  2013年   6篇
  2012年   13篇
  2011年   11篇
  2010年   12篇
  2009年   12篇
  2008年   17篇
  2007年   14篇
  2006年   7篇
  2005年   11篇
  2004年   5篇
  2003年   10篇
  2002年   12篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1987年   5篇
  1986年   3篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1972年   1篇
  1968年   1篇
  1960年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
81.
Whole-rock Nd and Sr isotopic compositions of the mafic-ultramafic complex near Finero demonstrate that the magma was derived from a depleted, perhaps MORB-type mantle reservoir. The Sm-Nd data for the Amphibole Peridotite unit can be interpreted as an isochron with an apparent age of 533 ± 20 Ma, which is consistent with a 207Pb/206Pb evaporation age of 549 ± 12 Ma of a single zircon grain from the Internal Gabbro unit. However, the interpretation of these apparent ages remains open to question. We therefore retain the alternative hypotheses that the intrusion occurred either about 533 or 270 Ma ago, the latter being the most likely age of emplacement of the much larger magma body near Balmuccia (Val Sesia). The implication of the older emplacement age (if correct) would be that the igneous complex may be related to the numerous amphibolite units, which are intercalated with the metapelites of the overlying Kinzigite Formation, and together with them may constitute an accretionary complex. In this case, the mafic-ultramafic complex itself might also be part of such an accretionary complex (as has been proposed for the Balmuccia peridotite).

Internal Sm-Nd isochrons involving grt, cpx, plag and amph from the Internal Gabbro unit yield concordant ages of 231 ± 23, 226 ± 7, 223 ± 10, 214 ± 17, and 203 ± 13 Ma. These results confirm published evidence for a separate, regional heating event about 215 ± 15 Ma ago.

Initial Nd(533) values average +6.3 ± 0.4 for six samples of the Amphibole Peridotite unit and +6.0 ± 1.2 for ten samples of the External Gabbro unit. 87Sr/86Sr ratios require little or no age correction and range from 0.7026 to 0.7047 (with two outliers at 0.7053 and 0.7071). Strong correlations between 87Sr/86Sr and K2O and weaker correlations between initial Nd and K2O imply a comparatively minor (≤ 10%) contamination of the External Gabbro magma by crustal material and a later alteration by a crustal or seawater-derived fluid. These results contrast sharply with the isotopic composition (negative Nd and high 87Sr/86Sr values) of the associated mantle rocks, the Phlogopite Peridotite unit, which has been pervasively metasomatized by crustal fluids. This type of metasomatism and its isotopic signature are never seen in the magmatic complex. This evidence rules out any direct genetic relationship between the igneous complex and the mantle peridotite. The crust-mantle interaction is the opposite of that seen at Balmuccia, where the mantle peridotite is essentially ‘pristine’ and the magmatic body has been extensively contaminated by assimilation of crustal rocks.  相似文献   

82.
Combined X-ray powder diffraction, Mössbauer, and XANES spectroscopy in situ experiments revealed the transformation of cubic (Mg0.8Fe0.2)O ferropericlase to a rhombohedrally distorted phase at 35(1) GPa and room temperature. The Mössbauer spectroscopy results show that the rhombohedral distortion does not involve magnetic ordering. Combined with data from the literature, our results imply that the cubic to rhombodedral transition occurs in (Mg,Fe)O under conditions of non-hydrostatic stress over a wide range of composition (0.2≤x Fe≤1).  相似文献   
83.
The Finero peridotite massif is a harzburgite that suffered a dramatic metasomatic enrichment resulting in the pervasive presence of amphibole and phlogopite and in the sporadic occurrence of apatite and carbonate (dolomite)-bearing domains. Pyroxenite (websterite) dykes also contain phlogopite and amphibole, but are rare. Peridotite bulk-rock composition retained highly depleted major element characteristics, but was enriched in K, Rb, Ba, Sr, LREE (light rare earth elements) (LaN/YbN = 8–17) and depleted in Nb. It has high radiogenic Sr (87Sr/86Sr(270) = 0.7055–0.7093), low radiogenic Nd (ɛNd(270) = −1 to −3) and EMII-like Pb isotopes. Two pyroxenite – peridotite sections examined in detail show the virtual absence of major and trace element gradients in the mineral phases. In both rock types, pyroxenes and olivines have the most unfertile major element composition observed in Ivrea peridotites, spinels are the richest in Cr, and amphibole is pargasite. Clinopyroxenes exhibit LREE-enriched patterns (LaN/YbN ∼16), negative Ti and Zr and generally positive Sr anomaly. Amphibole has similar characteristics, except a weak negative Sr anomaly, but incompatible element concentration ∼1.9 (Sr) to ∼7.9 (Ti) times higher than that of coexisting clinopyroxene. Marked geochemical gradients occur toward apatite and carbonate-bearing domains which are randomly distributed in both the sections examined. In these regions, pyroxenes and amphibole (edenite) are lower in mg## and higher in Na2O, and spinels and phlogopite are richer in Cr2O3. Both the mineral assemblage and the incompatible trace element characteristics of the mineral phases recall the typical signatures of “carbonatite” metasomatism (HFSE depletion, Sr, LILE and LREE enrichment). Clinopyroxene has higher REE and Sr concentrations than amphibole (amph/cpxDREE,Sr = 0.7–0.9) and lower Ti and Zr concentrations. It is proposed that the petrographic and geochemical features observed at Finero are consistent with a subduction environment. The lack of chemical gradients between pyroxenite and peridotite is explained by a model where melts derived from an eclogite-facies slab infiltrate the overhanging harzburgitic mantle wedge and, because of the special thermal structure of subduction zones, become heated to the temperature of the peridotite. If the resulting temperature is above that of the incipient melting of the hydrous peridotite system, the slab-derived melt equilibrates with the harzburgite and a crystal mush consisting of harzburgite and a silica saturated, hydrous melt is formed. During cooling, the crystal mush crystallizes producing the observed sequence of mineral phases and their observed chemical characteristics. In this context pyroxenites are regions of higher concentration of the melt in equilibrium with the harzburgite and not passage-ways through which exotic melts percolated. Only negligible chemical gradients can appear as an effect of the crystallization process, which also accounts for the high amphibole/clinopyroxene incompatible trace element ratios. The major element refractory composition is explained by an initially high peridotite/melt ratio. The apatite, carbonate-bearing domains are the result of the presence of some CO2 in the slab-derived melt. The CO2/H2O ratio in the peridotite mush increased by crystallization of hydrous phases (amphibole and phlogopite) locally resulting in the unmixing of a late carbonate fluid. The proposed scenario is consistent with subduction of probably Variscan age and with the occurrence of modal metasomatism before peridotite incorporation in the crust. Received: 20 July 1998 / Accepted: 28 October 1998  相似文献   
84.
In this contribution we evaluate the capabilities of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) using a 12 μm spot size. Precision, accuracy and detection limits were assessed on the USGS BCR-2G reference material. We demonstrate that the 12 μm LA-ICP-MS analyses of experimentally-grown amphibole and garnet are in excellent agreement with secondary ion mass spectrometry (SIMS) trace element determinations on the same crystals. The 12 μm spot size configuration was subsequently used to determine trace element crystal-melt partition coefficients (Dc/m) for a wide range of trace elements in amphibole in equilibrium with a basanitic melt. The following strategy to determine accurately and evaluate Dc/m is proposed. One or more major elements determined previously by electron probe microanalysis (EPMA) was used to ensure consistency between EPMA and the composition of the aerosol produced by the laser ablation. Measured Dc/m values were successively evaluated using the lattice strain model. The use of this strategy significantly improved the precision and accuracy of Dc/m determination when a LA-ICP-MS configuration with a high spatial resolution was employed.  相似文献   
85.
Biotites from mafic rocks occurring at different stratigraphic levels of the Ivrea-Verbano Mafic Complex are studied. The rocks are gabbros and diorites. All the biotites are intermediate between phlogopite and annite [0.282 (up to 7.14 and 9.32 wt%, respectively) with respect to those of the diorites (up to 1.26 and 6.26 wt%, respectively). Systematic compositional variations support the substitution model 2 IV Si+( IV R2+)2 IV Al+ VI Ti (R2+=Fe+Mg+Mn) in gabbros and IV Si+ VI Al IV Al+ VI Ti in diorites. A predominance of disordered stacking sequences, coexisting with 1M, 2M 1 and 3T polytypes was observed in all biotites. It was possible to carry out structural refinements only on three biotites-2M 1 from diorites (R-values between 2.68 and 3.77) and one biotite-1M from gabbros (R-value=3.09). It was shown that: (1) the reduced thickness of the tetrahedral sheet in Ba-rich biotites supports the coupled substitution IV Si+ XII K IV Al+ XII Ba; (2) the interlayer site geometry is affected by the whole layer chemistry and does not reflect only local chemical variations; (3) in two samples of the 2M 1 polytype, the M(1) octahedral site is larger and more distorted than the M(2) sites because of the preferential ordering of Fe2+ in the M(1) site, whereas one sample shows complete cation disorder in the octahedral sites. Biotite-1M shows that Fe2+ can also be located in the M(2) site. Some of the differences between the biotites of gabbros and diorites (e.g. Ba concentration and exchange vectors) may be linked to the host rock composition and to its crystallization process. Biotite occurs in trace amounts in gabbros and its crystallization is related to the interstitial melt which contributed to the adcumulus growth of the main rock forming phases and became highly enriched in K, Ba and Ti. Diorites are the result of equilibrium crystallization of a residual melt rich in incompatible elements, where biotite is a major constituent.  相似文献   
86.
ABSTRACT

In this work, we have studied the largest earthquake magnitudes on the Ecuadorian coast by using the principles of Extreme Value Analysis based on its two approaches: Block Maxima and Peaks-over-Threshold. First, before modelling the recorded earthquakes, the K-means clustering technique was applied to determine a classification according to the level of magnitude of the earthquakes. Then, models based on the Extreme Value theory of earthquake magnitudes were developed for each of the four clusters that were found, and finally, the best-fitted models were those known as Fréchet and Gumbel ones. The zone with the greatest earthquake magnitudes on the Ecuadorian coast is located between the north of the province of Manabí and the south of the province of Esmeraldas, with a return period of 50 years for an earthquake with magnitude greater than 7.7 MW.  相似文献   
87.
The influence of water on melting of mantle peridotite   总被引:39,自引:8,他引:39  
This experimental study examines the effects of variable concentrations of dissolved H2O on the compositions of silicate melts and their coexisting mineral assemblage of olivine + orthopyroxene ± clinopyroxene ± spinel ± garnet. Experiments were performed at pressures of 1.2 to 2.0 GPa and temperatures of 1100 to 1345 °C, with up to ∼12 wt% H2O dissolved in the liquid. The effects of increasing the concentration of dissolved H2O on the major element compositions of melts in equilibrium with a spinel lherzolite mineral assemblage are to decrease the concentrations of SiO2, FeO, MgO, and CaO. The concentration of Al2O3 is unaffected. The lower SiO2 contents of the hydrous melts result from an increase in the activity coefficient for SiO2 with increasing dissolved H2O. The lower concentrations of FeO and MgO result from the lower temperatures at which H2O-bearing melts coexist with mantle minerals as compared to anhydrous melts. These compositional changes produce an elevated SiO2/(MgO + FeO) ratio in hydrous peridotite partial melts, making them relatively SiO2 rich when compared to anhydrous melts on a volatile-free basis. Hydrous peridotite melting reactions are affected primarily by the lowered mantle solidus. Temperature-induced compositional variations in coexisting pyroxenes lower the proportion of clinopyroxene entering the melt relative to orthopyroxene. Isobaric batch melting calculations indicate that fluid-undersaturated peridotite melting is characterized by significantly lower melt productivity than anhydrous peridotite melting, and that the peridotite melting process in subduction zones is strongly influenced by the composition of the H2O-rich component introduced into the mantle wedge from the subducted slab. Received: 7 April 1997 / Accepted: 9 January 1998  相似文献   
88.
89.
Uranium series disequilibria in ocean island basalts (OIB) provide evidence for the presence of garnet in their source region. It has been suggested that enriched OIB signatures derive from mantle lithologies other than peridotite, such as eclogite or pyroxenite, and, in particular, that silica-poor garnet pyroxenite is the source lithology for alkali basalts. To test the ability of such a source to produce the U–Th disequilibria observed in alkali OIB, we determined experimentally clinopyroxene-melt and garnet-melt partition coefficients for a suite of trace elements, including U and Th, at 2.5 GPa and 1420–1450 °C. The starting composition for the experiments was a 21% partial melt of a silica-poor garnet pyroxenite. Experimentally determined clinopyroxene-melt partition coefficients range from 0.0083 ± 0.0006 to 0.020 ± 0.002 for Th and from 0.0094 ± 0.0006 to 0.024 ±0.002 for U, and garnet-melt partition coefficients are 0.0032 ± 0.0004 for Th and 0.013 ± 0.002 for U. Comparison of our experimental results with partition coefficients from previous experimental studies shows that the relative compatibilities of U and Th in both garnet and clinopyroxene are different for different mineral compositions, leading to varying degrees of U/Th fractionation with changing lithology. For a given melting rate and extent of partial melting, mafic lithologies tend to produce larger 230Th excesses than peridotite. However, this effect is minimized by the greater overall extents of melting experienced by eclogites and pyroxenites relative to peridotite. Results from chromatographic, batch, and fractional melting calculations with binary mixing between partial melts of pyroxenite and peridotite, carried out using our new partitioning data for the pyroxenite component and taking into account variable productivities and different solidus depths for the two lithologies, suggest that OIB are not the product of progressive melting of a source containing a fixed quantity of garnet pyroxenite. Melting a peridotite with enriched signatures, and mixing those melts with melts of a depleted, “normal” peridotite, is an alternative explanation for the trends seen in Hawaiian, Azores and Samoan lavas.  相似文献   
90.
Pothole formation and development may be influenced by joint sets and other heterogeneities within bedrock, as well as by hydraulics. Previous research indicates that most potholes found in rivers of the mountainous Spanish Central System exhibit preferred orientations associated with dominant joints and correlate more strongly with variations in substrate resistance than with hydraulics. Weathering and erosion weaken rock surfaces, which leads to decreased mechanical resistance. We start from the hypothesis that different mechanisms of pothole formation may create around the pothole a distinctive signature in terms of ultrasound pulse velocity and surface hardness. We develop a conceptual model and test it using potholes for which we know the mechanism of formation, demonstrating that the spatial and statistical distributions of dynamical mechanical properties and surface hardness of a pothole may provide insight into its genesis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号