全文获取类型
收费全文 | 215篇 |
免费 | 11篇 |
国内免费 | 1篇 |
专业分类
测绘学 | 12篇 |
大气科学 | 14篇 |
地球物理 | 52篇 |
地质学 | 118篇 |
海洋学 | 8篇 |
天文学 | 11篇 |
综合类 | 2篇 |
自然地理 | 10篇 |
出版年
2023年 | 2篇 |
2021年 | 8篇 |
2020年 | 10篇 |
2019年 | 8篇 |
2018年 | 12篇 |
2017年 | 10篇 |
2016年 | 19篇 |
2015年 | 12篇 |
2014年 | 9篇 |
2013年 | 15篇 |
2012年 | 13篇 |
2011年 | 16篇 |
2010年 | 12篇 |
2009年 | 27篇 |
2008年 | 14篇 |
2007年 | 5篇 |
2006年 | 10篇 |
2005年 | 8篇 |
2004年 | 3篇 |
2003年 | 3篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1996年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有227条查询结果,搜索用时 15 毫秒
101.
Florian W. Fichtner Abdoulaye A. Diakité Sisi Zlatanova Robert Voûte 《Transactions in GIS》2018,22(1):233-248
3D indoor navigation in multi‐story buildings and under changing environments is still difficult to perform. 3D models of buildings are commonly not available or outdated. 3D point clouds turned out to be a very practical way to capture 3D interior spaces and provide a notion of an empty space. Therefore, pathfinding in point clouds is rapidly emerging. However, processing of raw point clouds can be very expensive, as these are semantically poor and unstructured data. In this article we present an innovative octree‐based approach for processing of 3D indoor point clouds for the purpose of multi‐story pathfinding. We semantically identify the construction elements, which are of importance for the indoor navigation of humans (i.e., floors, walls, stairs, and obstacles), and use these to delineate the available navigable space. To illustrate the usability of this approach, we applied it to real‐world data sets and computed paths considering user constraints. The structuring of the point cloud into an octree approximation improves the point cloud processing and provides a structure for the empty space of the point cloud. It is also helpful to compute paths sufficiently accurate in their consideration of the spatial complexity. The entire process is automatic and able to deal with a large number of multi‐story indoor environments. 相似文献
102.
103.
Melt water driven stream and groundwater stage fluctuations on a glacier forefield (Dammagletscher,Switzerland) 下载免费PDF全文
Jan Magnusson Florian Kobierska Stephan Huxol Masaki Hayashi Tobias Jonas James W. Kirchner 《水文研究》2014,28(3):823-836
In many mountain regions, large land areas with heterogeneous soils have become ice‐free with the ongoing glacier retreat. On these recently formed proglacial fields, the melt of the remaining glaciers typically drives pronounced diurnal stream level fluctuations that propagate into the riparian zone. This behaviour was measured on the Damma glacier forefield in central Switzerland with stage recorders in the stream and groundwater monitoring wells along four transects. In spite of the large groundwater stage variations, radon measurements in the near‐stream riparian zone indicate that there is little mixing between stream water and groundwater on daily time scales. At all four transects, including both losing and gaining reaches, the groundwater level fluctuations lagged the stream stage variations and were often damped with distance from the stream. Similar behaviours have been modelled using the diffusion equation in coastal regions influenced by tidal sea level variations. We thus tested the ability of such a model to predict groundwater level fluctuations in proglacial fields. The model reproduced several key features of the observed fluctuations at three of four locations, although discrepancies also arise due to non representative input data and model simplifications. Nevertheless, calibration of the model for the individual transects yielded realistic estimates of hydraulic diffusivities between the stream and groundwater monitoring wells. We conclude that studying diurnal groundwater fluctuations can provide important information about the subsurface hydrology of alpine watersheds dominated by glacier melt. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
104.
Camille Jourdain Nicolas Claude Pablo Tassi Florian Cordier Germain Antoine 《地球表面变化过程与地形》2020,45(5):1100-1122
Alpine gravel-bed rivers are dynamic systems that have been subjected to many anthropic alterations in the past centuries. Riparian vegetation development on previously bare sediment bedforms has been a common adjustment, raising important management issues in terms of flood risks and biodiversity. Many of these rivers are also channelized, and as a result present a pattern of alternate bars. Considering recent advances in numerical biomorphodynamic modeling, this study aims at exploring numerically the morphodynamics of alternate bars in the presence of riparian vegetation. To this end, a dynamic vegetation module has been implemented on top of an existing morphodynamic model, accounting for ecological processes of seed dispersal, seedling recruitment, growth, and mortality. Numerical simulations have been performed on a simplified reach of a gravel-bed river with free migrating alternate bars at initial state. In this work 96 scenarios have been simulated, each representing 50 years of channel evolution, with different flood regimes characterized by various peak discharges and flood durations. Yearly peak discharge variability is explicitly modeled in 48 scenarios. Model outcomes present two possible equilibrium biomorphodynamic behaviors: stationary vegetated bars, or free migrating bars in the case of frequent vegetation removal during floods. This binary behavior holds true when the stochasticity of annual peak discharges is represented, and for a wide range of parameter values included in vegetation dynamic modeling. Transient mobility of vegetated bars is observed in specific configurations where large sediment deposits deflect the flow field, eroding bar heads. Modeled bar wavelengths are in the range of values predicted for free bars by linear bar theory, and remain far from the theoretical values of hybrid, steady bars. The shift from unvegetated migrating bars to steady vegetated bars seems to show that in these simulations vegetation constitutes a hydraulic forcing, leading to a shift from free bars to forced bars, with a final configuration largely inherited from the initial state. © 2019 John Wiley & Sons, Ltd. 相似文献
105.
Arctic climate change discourse: the contrasting politics of research agendas in the West and Russia
In this paper we explore how Western scientific concepts and attitudes towards indigenous knowledge, as they pertain to resource management and climate change, differ from the prevailing view in modern Russia. Western indigenous leaders representing the Inuit and Saami peoples are actively engaged in the academic and political discourse surrounding climate change, whereas their Russian colleagues tend to focus more on legislation and self-determination, as a post-Soviet legacy. We contribute to the debate with data from the Nenets tundra, showing how different research has employed the three crucial Western research paradigms of climate change, wildlife management and indigenous knowledge on the ground. We suggest that the daily practice of tundra nomadism involves permanent processes of negotiating one's position in a changing environment, which is why "adaptation" is woven into the society, and cosmology as a whole, rather than being separable into distinct "bodies" of knowledge or Western-designed categories. We argue that research agendas should be placed in their proper local and regional context, and temporal framework: for example, by collaborating with herders on the topics of weather instead of climate change, herding skills instead of wildlife management, and ways of engaging with the tundra instead of traditional ecological knowledge. 相似文献
106.
ZHOU Lei WANG Shaoqiang Georg KINDERMANN YU Guirui HUANG Mei Robert MICKLER Florian KRAXNER SHI Hao GONG Yazhen 《中国地理科学(英文版)》2013,23(5):519-536
It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influ- enced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under dif- ferent scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in cli- mate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001~100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001~100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration. 相似文献
107.
Nicholas Deichmann John Clinton Stephan Husen Benjamin Edwards Florian Haslinger Donat F?h Domenico Giardini Philipp K?stli Urs Kradolfer Stefan Wiemer 《Swiss Journal of Geoscience》2012,105(3):463-476
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2011. During this period, 522 earthquakes and 92 quarry blasts were detected and located in the region under consideration. With a total of only 10 events with M L????2.5, the seismic activity in the year 2011 was far below the average over the previous 36?years. Most noteworthy were the earthquake sequence of Sierre (VS) in January, with two events of M L 3.3 and 3.2, the M L 3.3 earthquake at a depth of 31?km below Bregenz, and the M L 3.1 event near Delémont. The two strongest events near Sierre produced shaking of intensity IV. 相似文献
108.
Alexander Kehm Mathis Bloßfeld Erricos C. Pavlis Florian Seitz 《Journal of Geodesy》2018,92(6):625-635
Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects. 相似文献
109.
The influence of gravitational slope deformation (GSD) on erosion rates and the shape of mountain belts has been identified worldwide, particularly in valleys affected by glacial retreat. However, due to a lack of understanding about the main predisposing factors influencing their spatial distribution, size and failure mechanisms, the effective impact of GSD on the evolution of the landscape remains difficult to quantify. This study presents the first detailed, regional-scale GSD inventory of the entire Upper Rhone catchment (western Switzerland). The detection and mapping of GSD are performed by combining different remote sensing approaches. Moreover, we propose a detailed characterisation of GSD, taking into account geometry, morphology and failure mechanisms. Based on these analyses, more than 300 GSD are identified, corresponding to 11 % of the entire study area. Spatial and statistical analyses indicate that GSD are not uniformly distributed across the study area: six GSD clusters are highlighted, containing more than 80 % of the GSD events detected. Our observations suggest that the distribution of GSDs is primarily related to coexisting active tectonic processes (including high uplift gradients and earthquake activity) and pre-existing regional-scale, tectonic weakness zones. The region’s lithological and structural conditions, on the other hand, appear largely to influence the failure mechanisms and the sizes of the GSD detected. 相似文献
110.
Robert Turnewitsch Barbara M. Springer Konstadinos Kiriakoulakis Juan Carlos Vilas Javier Arístegui George Wolff Florian Peine Stephan Werk Gerhard Graf Joanna J. Waniek 《Marine Chemistry》2007,105(3-4):208-228
Particulate matter in aquatic systems is an important vehicle for the transport of particulate organic carbon (POC). Its accurate measurement is of central importance for the understanding of marine carbon cycling. Previous work has shown that GF/F-filter-based bottle-sample-derived concentration estimates of POC are generally close to or higher than large-volume in-situ-pump-derived values (and in some rare cases in subzero waters are up to two orders of magnitude higher). To further investigate this phenomenon, water samples from the surface and mid-water Northeast Atlantic and the Baltic Sea were analyzed. Our data support a bias of POC concentration estimates caused by adsorption of nitrogen-rich dissolved organic material onto GF/F filters. For surface-ocean samples the mass per unit area of exposed filter and composition of adsorbed material depended on the filtered volume. Amounts of adsorbed OC were enhanced in the surface ocean (typically 0.5 μmol cm− 2 of exposed filter) as compared to the deep ocean (typically 0.2 μmol cm− 2 of exposed filter). These dependencies should be taken into account for future POC methodologies. Bottle/pump differences of samples that were not corrected for adsorption were higher in the deep ocean than in the surface ocean. This discrepancy increased in summer. It is shown that POC concentration estimates that were not corrected for adsorption depend not only on the filtered volume, true POC concentration and mass of adsorbed OC, but also on the filter area. However, in all cases we studied, correction for adsorption was important, but not sufficient, to explain bottle/pump differences. Artificial formation of filterable particles and/or processes leading to filterable material being lost from and/or missed by sample-processing procedures must be considered. It can be deduced that the maximum amounts of POC and particulate organic nitrogen (PON) that can be artificially formed per liter of filtered ocean water are 3–4 μM OC (5–10% of dissolved OC) and 0.2–0.5 μM ON (2–10% of dissolved ON), respectively. The relative sensitivities of bottle and pump procedures, and of surface- and deep-ocean material, to artificial particle formation and the missing/losing of material are evaluated. As present procedures do not exist to correct for all possible biasing effects due to artificial particle formation and/or miss/loss of filterable material, uncertainties of filtration-based estimates of POC concentrations need further testing. The challenge now is to further constrain the magnitude of the biasing effects that add to the adsorption effect to reduce the uncertainties of estimates of POC concentrations, inventories and fluxes in the ocean. 相似文献