首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   11篇
  国内免费   1篇
测绘学   12篇
大气科学   14篇
地球物理   52篇
地质学   118篇
海洋学   8篇
天文学   11篇
综合类   2篇
自然地理   10篇
  2023年   2篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   19篇
  2015年   12篇
  2014年   9篇
  2013年   15篇
  2012年   13篇
  2011年   16篇
  2010年   12篇
  2009年   27篇
  2008年   14篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1996年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有227条查询结果,搜索用时 15 毫秒
91.
92.
Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth’s interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ?=?7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700–1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3–6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of ~?4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.  相似文献   
93.
Particulate matter in aquatic systems is an important vehicle for the transport of particulate organic carbon (POC). Its accurate measurement is of central importance for the understanding of marine carbon cycling. Previous work has shown that GF/F-filter-based bottle-sample-derived concentration estimates of POC are generally close to or higher than large-volume in-situ-pump-derived values (and in some rare cases in subzero waters are up to two orders of magnitude higher). To further investigate this phenomenon, water samples from the surface and mid-water Northeast Atlantic and the Baltic Sea were analyzed. Our data support a bias of POC concentration estimates caused by adsorption of nitrogen-rich dissolved organic material onto GF/F filters. For surface-ocean samples the mass per unit area of exposed filter and composition of adsorbed material depended on the filtered volume. Amounts of adsorbed OC were enhanced in the surface ocean (typically 0.5 μmol cm− 2 of exposed filter) as compared to the deep ocean (typically 0.2 μmol cm− 2 of exposed filter). These dependencies should be taken into account for future POC methodologies. Bottle/pump differences of samples that were not corrected for adsorption were higher in the deep ocean than in the surface ocean. This discrepancy increased in summer. It is shown that POC concentration estimates that were not corrected for adsorption depend not only on the filtered volume, true POC concentration and mass of adsorbed OC, but also on the filter area. However, in all cases we studied, correction for adsorption was important, but not sufficient, to explain bottle/pump differences. Artificial formation of filterable particles and/or processes leading to filterable material being lost from and/or missed by sample-processing procedures must be considered. It can be deduced that the maximum amounts of POC and particulate organic nitrogen (PON) that can be artificially formed per liter of filtered ocean water are  3–4 μM OC (5–10% of dissolved OC) and  0.2–0.5 μM ON (2–10% of dissolved ON), respectively. The relative sensitivities of bottle and pump procedures, and of surface- and deep-ocean material, to artificial particle formation and the missing/losing of material are evaluated. As present procedures do not exist to correct for all possible biasing effects due to artificial particle formation and/or miss/loss of filterable material, uncertainties of filtration-based estimates of POC concentrations need further testing. The challenge now is to further constrain the magnitude of the biasing effects that add to the adsorption effect to reduce the uncertainties of estimates of POC concentrations, inventories and fluxes in the ocean.  相似文献   
94.
Intense farming is often associated with the excessive use of manure or fertilizers and the subsequent deterioration of the groundwater quality in many aquifers worldwide. Stable isotopes of dissolved nitrate (δ15N and δ18O) are widely used to determine sources of nitrate contamination and denitrification processes in groundwater but are often difficult to interpret. Thus, Monte Carlo simulations were carried out for a site in lower Bavaria, Germany, in order to explain δ15N observations in a porous groundwater system with two aquifers, the main aquifer (MA) and several smaller perched aquifers (PA). For evaluating potential contributions, frequency distributions of δ15N were simulated deriving from (I) the mixing of different nitrate sources, related to land use, as input to groundwater, combined with (II) transport of nitrate in groundwater and (III) microbial denitrification. Simulation results indicate a source-driven isotopic shift to heavier δ15N values of nitrate in groundwater, which may be explained by land use changes toward a more intensified agriculture releasing high amounts of manure. Microbial denitrification may play a role in the PA, with simulated δ15N distributions close to the observations. Denitrification processes are however unlikely for the MA, as reasonable simulation curve fits for such a scenario were obtained predominantly for unrealistic portions of nitrate sources and related land use. The applied approach can be used to qualitatively and quantitatively evaluate the influence of different potential contributions, which might mask each other due to overlapping δ15N ranges, and it can support the estimation of nitrate input related to land use.  相似文献   
95.
Through their consumption behavior, households are responsible for 72% of global greenhouse gas emissions. Thus, they are key actors in reaching the 1.5 °C goal under the Paris Agreement. However, the possible contribution and position of households in climate policies is neither well understood, nor do households receive sufficiently high priority in current climate policy strategies. This paper investigates how behavioral change can achieve a substantial reduction in greenhouse gas emissions in European high-income countries. It uses theoretical thinking and some core results from the HOPE research project, which investigated household preferences for reducing emissions in four European cities in France, Germany, Norway and Sweden. The paper makes five major points: First, car and plane mobility, meat and dairy consumption, as well as heating are the most dominant components of household footprints. Second, household living situations (demographics, size of home) greatly influence the household potential to reduce their footprint, even more than country or city location. Third, household decisions can be sequential and temporally dynamic, shifting through different phases such as childhood, adulthood, and illness. Fourth, short term voluntary efforts will not be sufficient by themselves to reach the drastic reductions needed to achieve the 1.5 °C goal; instead, households need a regulatory framework supporting their behavioral changes. Fifth, there is a mismatch between the roles and responsibilities conveyed by current climate policies and household perceptions of responsibility. We then conclude with further recommendations for research and policy.  相似文献   
96.
Arsenic is a redox‐sensitive element of environmental relevance and often enriched in iron sulphides. Because sediments from the Achterwasser lagoon, a part of the estuarine system of the river Oder, south‐west Baltic Sea, show unexpectedly high pyrite concentrations of up to 7·5 wt% they were used to investigate the influence of authigenic pyrite on the mobility and burial of As in the coastal environment. Micro‐X‐ray‐fluorescence measurements of 106 micrometre‐sized pyrite framboids from the anoxic sediments show highly variable As concentrations ranging from 6 to 1142 μg g?1. Even within a 1 cm thick layer, the As concentration of different framboids varies greatly and no clear depth trend is visible throughout the 50 cm long sediment core. Pyrite can account for 9 to 55% (average 22%) of the total As budget of the sediments and the degree of trace metalloid pyritization for As ranges from 26 to 61%, indicating that authigenic pyrite formation is an important process in the geochemical cycling of As in coastal sediments. High‐resolution micro‐X‐ray fluorescence mapping of single pyrite grains shows that As is distributed inhomogeneously within larger framboids, suggesting changing pore water composition during pyrite growth. X‐ray absorption near edge structure spectra indicate that As is usually present as As(‐I) substituting S in the pyrite lattice. However, in samples close to the sediment/water interface a considerable part of As is in higher valence states (+III/+V). This can be explained by frequent re‐suspension of the surficial sediments to the oxic water column due to wave action and subsequent re‐deposition, leading to the adsorption of As oxyanions onto pyrite. Although reduced As(‐I) becomes more important in the deeper samples, reflecting decreasing redox potential and a longer time since deposition, the occurrence of oxidized As species (AsIII/AsV) in pyrite in the anoxic part of the sediment suggests formation under dysoxic conditions.  相似文献   
97.
Widespread mud volcanism across the thick (≤ 14 km) seismically active sedimentary prism of the Gulf of Cadiz is driven by tectonic activity along extensive strike–slip faults and thrusts associated with the accommodation of the Africa–Eurasia convergence and building of the Arc of Gibraltar, respectively. An investigation of eleven active sites located on the Moroccan Margin and in deeper waters across the wedge showed that light volatile hydrocarbon gases vented at the mud volcanoes (MVs) have distinct, mainly thermogenic, origins. Gases of higher and lower thermal maturities are mixed at Ginsburg and Mercator MVs on the Moroccan Margin, probably because high maturity gases that are trapped beneath evaporite deposits are transported upwards at the MVs and mixed with shallower, less mature, thermogenic gases during migration. At all other sites except for the westernmost Porto MV, δ13C–CH4 and δ2H–CH4 values of ~ − 50‰ and − 200‰, respectively, suggest a common origin for methane; however, the ratio of CH4/(C2H6 + C3H8) varies from ~ 10 to > 7000 between sites. Mixing of shallow biogenic and deep thermogenic gases cannot account for the observed compositions which instead result mainly from extensive migration of thermogenic gases in the deeply-buried sediments, possibly associated with biodegradation of C2+ homologues and secondary methane production at Captain Arutyunov and Carlos Ribeiro MVs. At the deep-water Bonjardim, Olenin and Carlos Ribeiro MVs, generation of C2+-enriched gases is probably promoted by high heat flux anomalies which have been measured in the western area of the wedge. At Porto MV, gases are highly enriched in CH4 having δ13C–CH4 ~ − 50‰, as at most sites, but markedly lower δ2H–CH4 values < − 250‰, suggesting that it is not generated by thermal cracking of n-alkanes but rather that it has a deep Archaeal origin. The presence of petroleum-type hydrocarbons is consistent with a thermogenic origin, and at sites where CH4 is predominant support the suggestion that gases have experienced extensive transport during which they mobilized oil from sediments ~ 2–4 km deep. These fluids then migrate into shallower, thermally immature muds, driving their mobilization and extrusion at the seafloor. At Porto MV, the limited presence of petroleum in mud breccia sediments further supports the hypothesis of a predominantly deep microbial origin of CH4.  相似文献   
98.
We report δ44/40Ca(SRM 915a) values for eight fused MPI‐DING glasses and the respective original powders, six USGS igneous rock reference materials, the U‐Th disequilibria reference material TML, IAEA‐CO1 (Carrara marble) and several igneous rocks (komatiites and carbonatites). Sample selection was guided by three considerations: (1) to address the need for information values on reference materials that are widely available in support of interlaboratory comparison studies; (2) support the development of in situ laser ablation and ion microprobe techniques, which require isotopically homogenous reference samples for ablation; and (3) provide Ca isotope values on a wider range of igneous and metamorphic rock types than is currently available in the scientific literature. Calcium isotope ratios were measured by thermal ionisation mass spectrometry in two laboratories (IFM‐GEOMAR and Saskatchewan Isotope Laboratory) using 43Ca/48Ca‐ and 42Ca/43Ca‐double spike techniques and reported relative to the calcium carbonate reference material NIST SRM 915a. The measurement uncertainty in both laboratories was better than 0.2‰ at the 95% confidence level. The impact of different preparation methods on the δ44/40Ca(SRM 915a) values was found to be negligible. Except for ML3‐B, the original powders and the respective MPI‐DING glasses showed identical δ44/40Ca(SRM 915a) values; therefore, possible variations in the Ca isotope compositions resulting from the fusion process are excluded. Individual analyses of different glass fragments indicated that the glasses are well homogenised on the mm scale with respect to Ca. The range of δ44/40Ca(SRM 915a) values in the igneous rocks studied was larger than previously observed, mostly owing to the inclusion of ultramafic rocks from ophiolite sections. In particular, the dunite DTS‐1 (1.49 ± 0.06‰) and the peridotite PCC‐1 (1.14 ± 0.07‰) are enriched in 44Ca relative to volcanic rocks (0.8 ± 0.1‰). The Carrara marble (1.32 ± 0.06‰) was also found to be enriched in 44Ca relative to the values of assumed precursor carbonates (< 0.8‰). These findings suggest that the isotopes of Ca are susceptible to fractionation at high temperatures by, as yet, unidentified igneous and metamorphic processes.  相似文献   
99.
Abstract– Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s?1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro‐computer tomography (μ‐CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p‐wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.  相似文献   
100.
The influence of gravitational slope deformation (GSD) on erosion rates and the shape of mountain belts has been identified worldwide, particularly in valleys affected by glacial retreat. However, due to a lack of understanding about the main predisposing factors influencing their spatial distribution, size and failure mechanisms, the effective impact of GSD on the evolution of the landscape remains difficult to quantify. This study presents the first detailed, regional-scale GSD inventory of the entire Upper Rhone catchment (western Switzerland). The detection and mapping of GSD are performed by combining different remote sensing approaches. Moreover, we propose a detailed characterisation of GSD, taking into account geometry, morphology and failure mechanisms. Based on these analyses, more than 300 GSD are identified, corresponding to 11 % of the entire study area. Spatial and statistical analyses indicate that GSD are not uniformly distributed across the study area: six GSD clusters are highlighted, containing more than 80 % of the GSD events detected. Our observations suggest that the distribution of GSDs is primarily related to coexisting active tectonic processes (including high uplift gradients and earthquake activity) and pre-existing regional-scale, tectonic weakness zones. The region’s lithological and structural conditions, on the other hand, appear largely to influence the failure mechanisms and the sizes of the GSD detected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号