首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   11篇
  国内免费   1篇
测绘学   12篇
大气科学   14篇
地球物理   52篇
地质学   118篇
海洋学   8篇
天文学   11篇
综合类   2篇
自然地理   10篇
  2023年   2篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   19篇
  2015年   12篇
  2014年   9篇
  2013年   15篇
  2012年   13篇
  2011年   16篇
  2010年   12篇
  2009年   27篇
  2008年   14篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1996年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有227条查询结果,搜索用时 15 毫秒
51.
Diffusive mass exchange into immobile water regions within heterogeneous porous aquifers influences the fate of solutes. The percentage of immobile water is often unidentified in natural aquifers though. Hence, the mathematical prediction of solute transport in such heterogeneous aquifers remains challenging. The objective of this study was to find a simple analytical model approach that allows quantifying properties of mobile and immobile water regions and the portion of immobile water in a porous system. Therefore, the Single Fissure Dispersion Model (SFDM), which takes into account diffusive mass exchange between mobile and immobile water zones, was applied to model transport in well‐defined saturated dual‐porosity column experiments. Direct and indirect model validation was performed by running experiments at different flow velocities and using conservative tracer with different molecular diffusion coefficients. In another column setup, immobile water regions were randomly distributed to test the model applicability and to determine the portion of immobile water. In all setups, the tracer concentration curves showed differences in normalized maximum peak concentration, tailing and mass recovery according to their diffusion coefficients. These findings were more pronounced at lower flow rates (larger flow times) indicating the dependency of diffusive mass exchange into immobile water regions on tracers' molecular diffusion coefficients. The SFDM simulated all data with high model efficiency. Successful model validation supported the physical meaning of fitted model parameters. This study showed that the SFDM, developed for fissured aquifers, is applicable in porous media and can be used to determine porosity and volume of regions with immobile water. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
52.
Moving object databases are designed to store and process spatial and temporal object data. An especially useful moving object type is a moving region, which consists of one or more moving polygons suitable for modeling the spread of forest fires, the movement of clouds, spread of diseases and many other real-world phenomena. Previous implementations usually allow a changing shape of the region during the movement; however, the necessary restrictions on this model result in an inaccurate interpolation of rotating objects. In this paper, we present an alternative approach for moving and rotating regions of fixed shape, called Fixed Moving Regions, which provide a significantly better model for a wide range of applications like modeling the movement of oil tankers, icebergs and other rigid structures. Furthermore, we describe and implement several useful operations on this new object type to enable a database system to solve many real-world problems, as for example collision tests, projections and intersections, much more accurate than with other models. Based on this research, we also implemented a library for easy integration into moving objects database systems, as for example the DBMS Secondo (1) (2) developed at the FernUniversität in Hagen.  相似文献   
53.
River water-level time series at fixed geographical locations, so-called virtual stations, have been computed from single altimeter crossings for many years. Their temporal resolution is limited by the repeat cycle of the individual altimetry missions. The combination of all altimetry measurements along a river enables computing a water-level time series with improved temporal and spatial resolutions. This study uses the geostatistical method of spatio-temporal ordinary kriging to link multi-mission altimetry data along the Mekong River. The required covariance models reflecting the water flow are estimated based on empirical covariance values between altimetry observations at various locations. In this study, two covariance models are developed and tested in the case of the Mekong River: a stationary and a non-stationary covariance model. The proposed approach predicts water-level time series at different locations along the Mekong River with a temporal resolution of 5 days. Validation is performed against in situ data from four gauging stations, yielding RMS differences between 0.82 and 1.29 m and squared correlation coefficients between 0.89 and 0.94. Both models produce comparable results when used for combining data from Envisat, Jason-1, and SARAL for the time period between 2002 and 2015. The quality of the predicted time series turns out to be robust against a possibly decreasing availability of altimetry mission data. This demonstrates that our method is able to close the data gap between the end of the Envisat and the launch of the SARAL mission with interpolated time series.  相似文献   
54.
Dynamite shots of the crustal-scale refraction seismic project ALP 2002 were recorded by an array of 40 seismological three-component stations on the TRANSALP profile. These observations provide a direct link between the two deep seismic projects. We report preliminary results obtained from these data. In a first approach, we verified the TRANSALP refraction seismic velocity model computing travel times for several shots and comparing them to the new observations. The results generally confirm this model. Significant first-break travel time differences in and near the Tauern Window are explained by anisotropy. Large-scale features of the model, particularly the Moho structure, seem to be continuous towards the east. Travel time residuals of wide-angle reflections indicate a slight eastward dip component of the Adriatic Moho.  相似文献   
55.
Advances in pore-scale imaging (e.g., μ-CT scanning), increasing availability of computational resources, and recent developments in numerical algorithms have started rendering direct pore-scale numerical simulations of multi-phase flow on pore structures feasible. Quasi-static methods, where the viscous and the capillary limit are iterated sequentially, fall short in rigorously capturing crucial flow phenomena at the pore scale. Direct simulation techniques are needed that account for the full coupling between capillary and viscous flow phenomena. Consequently, there is a strong demand for robust and effective numerical methods that can deliver high-accuracy, high-resolution solutions of pore-scale flow in a computationally efficient manner. Direct simulations of pore-scale flow on imaged volumes can yield important insights about physical phenomena taking place during multi-phase, multi-component displacements. Such simulations can be utilized for optimizing various enhanced oil recovery (EOR) schemes and permit the computation of effective properties for Darcy-scale multi-phase flows.We implement a phase-field model for the direct pore-scale simulation of incompressible flow of two immiscible fluids. The model naturally lends itself to the transport of fluids with large density and viscosity ratios. In the phase-field approach, the fluid-phase interfaces are expressed in terms of thin transition regions, the so-called diffuse interfaces, for increased computational efficiency. The conservation law of mass for binary mixtures leads to the advective Cahn–Hilliard equation and the condition that the velocity field is divergence free. Momentum balance, on the other hand, leads to the Navier–Stokes equations for Newtonian fluids modified for two-phase flow and coupled to the advective Cahn–Hilliard equation. Unlike the volume of fluid (VoF) and level-set methods, which rely on regularization techniques to describe the phase interfaces, the phase-field method facilitates a thermodynamic treatment of the phase interfaces, rendering it more physically consistent for the direct simulations of two-phase pore-scale flow. A novel geometric wetting (wall) boundary condition is implemented as part of the phase-field method for the simulation of two-fluid flows with moving contact lines. The geometric boundary condition accurately replicates the prescribed equilibrium contact angle and is extended to account for dynamic (non-equilibrium) effects. The coupled advective Cahn–Hilliard and modified Navier–Stokes (phase-field) system is solved by using a robust and accurate semi-implicit finite volume method. An extension of the momentum balance equations is also implemented for Herschel–Bulkley (non-Newtonian) fluids. Non-equilibrium-induced two-phase flow problems and dynamic two-phase flows in simple two-dimensional (2-D) and three-dimensional (3-D) geometries are investigated to validate the model and its numerical implementation. Quantitative comparisons are made for cases with analytical solutions. Two-phase flow in an idealized 2-D pore-scale conduit is simulated to demonstrate the viability of the proposed direct numerical simulation approach.  相似文献   
56.
A comprehensive hydrological modeling study in the drainage area of a hydropower reservoir in central Switzerland is presented. Two models were tested to reproduce the measured discharge dynamics: (1) a detailed energy-balance model (ALPINE3D) primarily designed for snow simulations; (2) a conceptual runoff model system (PREVAH), including a distributed temperature-index snow and ice melt model. Considerable effort was put into distributing available meteorological station data to the model grids as forcing data. The recent EU regional climate modeling initiative ENSEMBLES provided up-to-date climate predictions for two 30-a periods in mid and late 21st century. These were used to estimate evolutions in the water supply of the hydropower reservoir in response to expected climate changes. The simulations suggest a shift of spring peak-flow by almost two months for the end of the century. Warmer winter temperatures will cause higher winter base-flow. Due to glacier retreat, late-summer flow will decrease at the end of the century.  相似文献   
57.
This report of the Swiss Seismological Service summarizes the seismic activity in Switzerland and surrounding regions during 2008. During this period, 451 earthquakes and 75 quarry blasts were detected and located in the region under consideration. The three strongest events occurred in the Valais, near Lac des Toules (ML 3.6), and in Graubünden, near Ilanz (ML 3.7) and Paspels (ML 4.0). Although felt by the population, they were not reported to have caused any damage. However, with a total of only 15 events with ML ≥ 2.5, the seismic activity in the year 2008 was far below the average over the previous 33 years.  相似文献   
58.
We implemented multiple independent field techniques to determine the direction and velocity of groundwater flow at a specific stream reach in a glacier forefield. Time‐lapse experiments were conducted using two electrical resistivity tomography (ERT) lines installed in a cross pattern. A circular array of groundwater tubes was also installed to monitor groundwater flow via discrete salt injections. Both inter‐borehole and ERT results confirmed this stream section as a losing reach and enabled quantification of the flow direction. Both techniques yielded advection velocities varying between 5.7 and 21.8 m/day. Estimates of groundwater flow direction and velocity indicated that groundwater infiltrates from the stream nearby and not from the adjacent lateral moraine. Groundwater age estimated from radon concentration measurements supported this hypothesis. Despite uncertainties inherent to each of the methods deployed, the combination of multiple field techniques allowed drawing consistent conclusions about local groundwater flow. We thus regard our multi‐method approach as a reliable way to characterize the two‐dimensional groundwater flow at sites where more invasive groundwater investigation techniques are difficult to carry out and local heterogeneities can make single measurements unreliable. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
59.
U–Pb zircon geochronology, Sr–Nd isotope and bulk-rock geochemistry have been applied to meta-igneous and meta-sedimentary rocks from high-pressure metamorphic mélanges exposed on the Cycladic islands of Tinos, Syros and Andros. Ion microprobe (SHRIMP) U–Pb zircon dating of 7 samples representing meta-igneous blocks (Tinos), a blackwall zone (Tinos) and chlorite–talc schists from block-matrix contacts (Syros and Tinos) yielded Cretaceous ages of c. 80 Ma. Many of the criteria commonly used to distinguish between magmatic or metamorphic zircon genesis (internal structure, Th/U ratio, REE characteristics, Ti-in zircon thermometry, enclosed mineral phases) do not provide unambiguous constraints for the mode of formation. However, a magmatic origin for Cretaceous zircon of meta-gabbros and eclogites is considered likely. Supporting evidence for a previously suggested metamorphic origin for c. 80 Ma zircon in eclogite has not been found. Zircon of the same age occurring in chlorite–talc schists is presumably related to non-magmatic processes. Well-defined Cretaceous age groups clustering at c. 79 Ma also occur in the detrital zircon populations of 2 quartz mica schists representing the mélange matrix on Tinos, and suggest a much later time for sediment accumulation than previously assumed. The importance of c. 57 Ma zircon ages remains unclear, but may record either HP metamorphic processes or a post-57 Ma depositional age. The youngest age group in a third quartz mica schist from Tinos, collected outside the main mélange occurrences, clusters at c. 226–238 Ma. In all clastic metasediments from Tinos, most data points plot along the concordia between c. 300 and 900 Ma; single data points indicate concordant ages of c. 2.5 Ga, 2.3 Ga and 1 Ga, respectively. The youngest 206Pb/238U age group that has been recognized in a felsic paragneiss from Andros indicates an age of 163.1 ± 3.9 Ma, and mostly represents overgrowths around zircon with ages in the range from ~ 272 to ~ 289 Ma. Single data points of other inherited cores provided 206Pb/238U ages of c. 630 and c. 930 Ma. Meta-gabbros from Tinos show a large compositional variability and were found at 4 locations, each with distinct compositional characteristics, suggesting different crystallization histories, different sources and/or significant post-magmatic disturbance. The geochemistry of mélange blocks and the identical U–Pb zircon ages suggest that the block-matrix associations on Tinos and Syros can be grouped together. On a broader regional scale, there seem to be similarities between some meta-igneous rocks from Tinos and Evvia. Field relationships indicate that the mélanges occurring in southern Andros and northern Tinos can be correlated, but supporting geochemical and/or geochronological evidence for this interpretation could not be established. Previously published Jurassic ages for mafic and felsic mélange blocks from Andros suggest a genetic relationship to the ophiolite occurrences exposed in the larger Balkan region. A similar regional correlation is also considered likely for the Cretaceous meta-gabbros from Tinos and Syros, but cannot be documented with certainty.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号