首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   1篇
地质学   31篇
海洋学   3篇
天文学   2篇
自然地理   6篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   5篇
  2000年   2篇
  1997年   1篇
  1996年   2篇
  1991年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有45条查询结果,搜索用时 0 毫秒
21.
Tectonics and climate are the major extrinsic upstream controls on both the external and internal architectures of fluvial channels. While the role of tectonics has been well‐documented, the role of climate has received less attention. Because both tectonics and climate can produce similar stratigraphic architectures, the ability to recognize and differentiate these has major ramifications for the interpretation of fluvial stratigraphy. The Pennsylvanian to Permian succession of the Maritimes Basin complex on Cape Breton Island is ca 5 km thick, and is composed of predominantly non‐marine strata deposited within a series of depocentres characterized by different subsidence regimes. Basins in the west are transtensional depocentres characterized by episodic fault movement. In contrast, basins in the east were formed during prolonged periods of passive thermal subsidence. The stratigraphy is composed of four second‐order sequences (A to D), each 5 to 10 Myr in duration. These sequences are composed of amalgamated fluvial channel deposits that fine upwards into extensive mud‐dominated floodplain deposits with isolated fluvial channel bodies. A spectrum of fluvial styles is recorded within the study area including perennial, perennial/intermittent and ephemeral. Four stratigraphic intervals (E1 to E4) are recognized in which the deposits of strongly seasonal perennial/intermittent fluvial deposits are predominant. These intervals, 2 to 6 Myr in duration, are correlated across the study area between basins with differing tectonic regimes and do not correlate with a particular position in second‐order sequences. This suggests that climate exerted the dominant influence on the formation of these intervals and can be differentiated from tectonic imprints. While the tectonic regime of a particular basin exerted a fundamental control on the external architecture, a coherent record of climate change is recognized in the internal architecture of fluvial units. This study demonstrates that tectonic and climatic controls can be recognized and differentiated in vertical successions by evaluating the changes in fluvial architecture.  相似文献   
22.
23.
Fluvial strata dominated internally by sedimentary structures of interpreted upper flow regime origin are moderately common in the rock record, yet their abundance is not appreciated and many examples may go unnoticed. A spectrum of sedimentary structures is recognised, all of which occur over a wide range of scale: 1. cross-bedding with humpback, sigmoidal and ultimately low-angle cross-sectional foreset geometries (interpreted as recording the transition from dune to upper plane bed bedform stability field), 2. planar/flat lamination with parting lineation, characteristic of the upper plane bed phase, 3. flat and low-angle lamination with minor convex-upward elements, characteristic of the transition from upper plane bed to antidune stability fields, 4. convex-upward bedforms, down- and up-palaeocurrent-dipping, low-angle cross-bedding and symmetrical drapes, interpreted as the product of antidunes, and 5. backsets terminating updip against an upstream-dipping erosion surface, interpreted as recording chute and pool conditions. In some fluvial successions, the entirety or substantial portions of channel sandstone bodies may be made up of such structures. These Upper Flow Regime Sheets, Lenses and Scour Fills (UFR) are defined herein as an extension of Miall's [Miall, A.D., 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev. 22: 261–308.] Laminated Sand Sheets architectural element. Given the conditions that favour preservation of upper flow regime structures (rapid changes in flow strength), it is suggested that the presence of UFR elements in ancient fluvial successions may indicate sediment accumulation under the influence of a strongly seasonal palaeoclimate that involves a pronounced seasonal peak in precipitation and runoff.  相似文献   
24.
The late Early Permian (273 – 271 Ma) Wandrawandian Siltstone in the southern Sydney Basin of New South Wales represents a marine highstand that can be correlated over 2000 km. A mainly fine-grained terrigenous clastic succession, the Wandrawandian Siltstone contains evidence for cold, possibly glacial conditions based on the presence of outsized clasts and glendonites, mineral pseudomorphs after ikaite, a mineral that forms in cold (0 – 7°C) marine sediments. A lithostratigraphic and facies analysis of the unit was conducted, based on extensive coastal outcrops and continuous drillcores. Eight facies associations were identified: (i) siltstone; (ii) siltstone with minor interbedded sandstone; (iii) interbedded tabular sandstone and siltstone; (iv) admixed sandstone and siltstone to medium-grained sandstone; (v) discrete, discontinuous sandstone intervals; (vi) chaotic conglomerate and sandstone in large channel forms; (vii) chaotically bedded and pervasively soft-sediment-deformed intervals; and (viii) tuffaceous siltstone and claystone. Using lithology and ichnology, relative water depths were ascribed to each facies association. Based on these associations, the unit was divided into five informal members that reveal a history of significant relative sea-level fluctuations throughout the formation: member I, interbedded/admixed sandstone and siltstone; member II, siltstone; member III, slumped masses of members I and II; member IV, siltstone and erosionally based lensoid sandstone beds and channel bodies; and member V, interbedded/admixed sandstone and siltstone with abundant tuffs. Member I marks an initial marine transgression from shoreface to offshore depths. Member II records the maximum water depth of the shelf. Member III is interpreted to be a slump sheet; plausible mechanisms for its emplacement include seismicity produced by tectonism or glacio-isostatic rebound, changes in pore-water pressures due to sea-level fluctuations, or an increase in sedimentation rates. Members IV and V record minor fluctuations in depositional environments from offshore to shoreface water depths. Member IV includes regionally extensive, large channel bodies, with composite fills that are interpreted as storm-influenced mass-flow deposits. Member V includes a greater abundance of volcanic ash. Glacial controls (isostasy, eustasy) and tectonic affects may have worked in concert to produce the changes in depositional environments observed in the Wandrawandian Siltstone.  相似文献   
25.
The Late Triassic (Carnian-Rhaetian) Callide Coal Measures are preserved in a partly fault-bounded basin remnant in east-central Queensland, Australia. The sequence comprises up to 150 m of interbedded clastic sedimentary rocks and at least four major coal seams, including one coal body up to 23 m thick. The sequence was deposited initially in high-gradient alluvial fan systems which gave way through time to sandy, low-sinuosity rivers. The restricted, intermontane and entirely alluvial nature of sediment accumulation is here considered to have influence the petrographic characteristics of Callide coals, and their external geometry.The main coal seam from the Callide Measures shows variation in the predominance of some macerals, indicating successions of environmental changes. The application of transmission electron microscopy (TEM) to the study of the Callide coal has enabled a better understanding of the nature and origin of some of the less understood macerals such as micrinite and vitrinite B. Two forms of vitrinite have been observed, each with a distinct reflectance range. The wood-sourced vitrinite A displays an average reflectance of 0.56%, implying a higher rank than the 0.49% Ro total vitrinite reflectance recorded in previous publications. Vitrinite B and A together represent the most commonly occurring macerals in the Callide coal samples of the present study. The lower-reflecting vitrinite B which forms bands, often several hundred μm in thickness, in TEM shows sub-micron electron transparent laminae of lipid-rich material alternating with a more conventional vitrinite material. The vitrinite B is interpreted to represent accumulations of leaves.The Callide coal has entered the oil window, and oil has been generated from some exinite, cutinite, and resinite, as evident from change in fluorescence and the presence of exsudatinite in cell cavities and cleats. Vitrinite B is seen under the microscope to also be generating oil. Micrinite, the origin of which has been much debated, occurs in selected horizons only, as lenticular bodies suggesting cell filling or filling of spaces between laminations in vitrinite B. TEM shows micrinite to consist predominantly of sub-micron pyrite and possibly other mineral particles adsorbed on humic acids.  相似文献   
26.
The Pisco earthquake ( M w 8.0; 2007 August 15) occurred offshore of Peru's southern coast at the subduction interface between the Nazca and South American plates. It ruptured a previously identified seismic gap along the Peruvian margin. We use Wide Swath InSAR observations acquired by the Envisat satellite in descending and ascending orbits to constrain coseismic slip distribution of this subduction earthquake. The data show movement of the coastal regions by as much as 85 cm in the line-of-sight of the satellite. Distributed-slip model indicates that the coseismic slip reaches values of about 5.5 m at a depth of ∼18–20 km. The slip is confined to less than 40 km depth, with most of the moment release located on the shallow parts of the interface above 30 km depth. The region with maximum coseismic slip in the InSAR model is located offshore, close to the seismic moment centroid location. The geodetic estimate of seismic moment is 1.23 × 1021 Nm ( M w 8.06), consistent with seismic estimates. The slip model inferred from the InSAR observations suggests that the Pisco earthquake ruptured only a portion of the seismic gap zone in Peru between 13.5° S and 14.5° S, hence there is still a significant seismic gap to the south of the 2007 event that has not experienced a large earthquake since at least 1687.  相似文献   
27.
The Drummond Basin of central Queensland preserves a large-volume succession of little studied, predominantly fluviatile, coarse-grained sedimentary rocks of mid-Mississippian age. The stratigraphy of the basin has been subdivided into three sedimentary cycles. The Cycle 1/Cycle 2 boundary records a distinct, but poorly understood change in provenance from a volcanic-dominated succession related to initial basin rifting (Cycle 1) to a quartz-rich, craton-derived succession (Cycle 2). Cycle 3 has been thought to mark a resumption of intrabasinal volcanism and related sedimentation. The purpose of this study was to enhance the understanding of the basin-wide siliciclastic sedimentation of Cycles 2 and 3, and causes for the changes in sediment provenance. This objective was achieved by constraining large-scale spatial and temporal depositional trends and investigating sediment transport pathways into and through the basin. Petrographic, QFL, paleocurrent and conglomerate clast analyses were undertaken. The observations presented here have several implications relevant to understanding the stratigraphy of the Drummond Basin and regional tectonic events at this time. Cycle 3 is revised here primarily to be a continuation of Cycle 2-style basement-derived sedimentation, rather than recording a resumption of volcanism in the area, as per prevailing models. Quartz-rich sedimentation in the Drummond Basin was, therefore, more long-lived than previously envisaged, and once established, was not significantly disrupted by volcanism. Cycle 2 formation thicknesses appear highly variable across the basin. This is unlikely to be a result of pre-existing rift-related topography as suggested in previous models. The thickness variations are more likely related to sediment bypassing and post-depositional deformation in the area. The distinctive coarse-grained, relatively quartz-rich sedimentation of Cycles 2 and 3 is unusual in its volume and extent. The sediment was transported into the basin from its southern/southwestern margin, implying long-distance transport and extrabasinal sediment supply. While the specific source terrain(s) remain unknown, one plausible tectonic driver was far-field influence of the intraplate Alice Springs Orogeny.  相似文献   
28.
After a short summary of the main current drivers of internal migration in the UK, the paper discusses likely future migration patterns and processes under different social scenarios. It then anticipates the effects of environmental change on these migration flows. The main conclusion is that the impacts will probably be relatively minor; the UK is considered to be extremely well placed to adjust to climate change without a major redistribution of its population. A minor exception to this is that greater river and coastal flooding is likely to render some areas hazardous to settlement and/or very costly to protect. And crucial to successful adaptation is good governance, specifically a strong state that can plan and execute major environmental infrastructures, and can respond quickly and decisively to environmental challenges.  相似文献   
29.
Extant models predict delta front environments down‐drift of river mouths as unfavourable for organisms because of the physico‐chemical stresses caused by sediment and fresh water influx. This study, however, finds evidence for near‐optimal living conditions down‐drift of contemporaneous mouth bars and distributary channels, as well as at the tops of abandoned lobes, in part of the asymmetrical ‘Notom Delta’ complex of the Ferron Sandstone (Turonian, south‐eastern Utah, USA). Presented herein is a sedimentological and ichnological model using thirty‐two detailed measured sections along a 16 km transect through two continuously exposed, ca 10 m thick allomembers containing delta front, mouth bar and distributary channel facies. Azimuths from sedimentary structures show south‐eastward deflection of near‐shore palaeocurrents relative to the inferred north–south shoreline, as well as minor reversal of flow. Two end‐member trace fossil suites are recognized in delta front sandstones: (i) a stressed suite of low abundance, low diversity, diminutive traces reflecting mobile deposit feeding, resting and locomotion behaviours; and (ii) a comparatively unstressed, high abundance, moderate diversity suite with a regular, heterogeneous distribution of deep, vertical or U‐shaped suspension‐feeding burrows which, in places, thoroughly homogenize the sandstones. The down‐drift side of the delta was colonized by suspension feeders during seasonal reversal of the seaway gyre when mud plumes were swept northward or when river‐derived nutrients were sufficiently concentrated relative to fresh water and sediment input. During normal seaway circulation, very high sedimentation rates and mud‐laden, wave‐dampened waters down‐drift of the river mouths heightened the preservation potential of the pervasively bioturbated facies. Up‐drift of the river mouths, these bioturbated facies were either not preserved or not developed until the lobe was abandoned. This alternative model for delta planform asymmetry contributes to the refinement of facies models for deltaic systems and provides a framework for predicting the distribution of bioturbation‐enhanced porosity and permeability in lobe‐deflected deltas.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号