首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653篇
  免费   31篇
  国内免费   11篇
测绘学   38篇
大气科学   86篇
地球物理   153篇
地质学   287篇
海洋学   62篇
天文学   34篇
综合类   5篇
自然地理   30篇
  2022年   6篇
  2021年   26篇
  2020年   9篇
  2019年   15篇
  2018年   32篇
  2017年   24篇
  2016年   34篇
  2015年   30篇
  2014年   38篇
  2013年   44篇
  2012年   36篇
  2011年   54篇
  2010年   45篇
  2009年   34篇
  2008年   40篇
  2007年   35篇
  2006年   40篇
  2005年   18篇
  2004年   14篇
  2003年   15篇
  2002年   13篇
  2001年   13篇
  2000年   10篇
  1999年   5篇
  1998年   9篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   7篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1973年   1篇
  1969年   1篇
  1965年   1篇
  1955年   1篇
  1953年   1篇
  1940年   1篇
  1939年   3篇
排序方式: 共有695条查询结果,搜索用时 328 毫秒
241.
Recent wave reanalysis databases require the application of techniques capable of managing huge amounts of information. In this paper, several clustering and selection algorithms: K-Means (KMA), self-organizing maps (SOM) and Maximum Dissimilarity (MDA) have been applied to analyze trivariate hourly time series of met-ocean parameters (significant wave height, mean period, and mean wave direction). A methodology has been developed to apply the aforementioned techniques to wave climate analysis, which implies data pre-processing and slight modifications in the algorithms. Results show that: a) the SOM classifies the wave climate in the relevant “wave types” projected in a bidimensional lattice, providing an easy visualization and probabilistic multidimensional analysis; b) the KMA technique correctly represents the average wave climate and can be used in several coastal applications such as longshore drift or harbor agitation; c) the MDA algorithm allows selecting a representative subset of the wave climate diversity quite suitable to be implemented in a nearshore propagation methodology.  相似文献   
242.
Motivated by air quality and numerical modelling applications as well as recent theoretical advancements in the topic, a field experiment, dubbed transition flow experiment, was conducted in Phoenix, Arizona to study the evening transition in complex terrain (shift of winds from upslope to downslope). Two scenarios were considered: (i) the flow reversal due to a change of buoyancy of a cooled slab of air near the ground, and (ii) the formation of a transition front. A suite of in-situ flow, turbulence and particulate matter (PM) concentration sensors, vertically profiling tethered balloons and remote sensors were deployed, and a mesoscale numerical model provided guidance for interpreting observations. The results were consistent with the front formation mechanism, where it was also found that enhanced turbulence associated with the front increases the local PM concentration. During the transition period the flow adjustment was complex, involving the arrival of multiple fronts from different slopes, directional shear between fronts and episodic turbulent mixing events. The upward momentum diffusion from the incipient downslope flow was small because of stable stratification near the ground, and full establishment of downslope flow occurred over several hours following sunset. Episodic frontal events pose challenges to the modelling of the evening transition in complex terrain, requiring conditional parametrizations for subgrid scales. The observed increase of PM concentration during the evening transition has significant implications for the regulatory enforcement of PM standards for the area.  相似文献   
243.
This study evaluates the UCLA-ETA regional model’s dynamic downscaling ability to improve the National Center for Environmental Prediction Climate Forecast System (NCEP CFS), winter season predictions over the contiguous United States (US). Spatial distributions and temporal variations of seasonal and monthly precipitation are the main focus. A multi-member ensemble means of 22 winters from 1982 through 2004 are included in the study. CFS over-predicts the precipitation in eastern and western US by as much as 45 and 90 % on average compared to observations, respectively. Dynamic downscaling improves the precipitation hindcasts across the domain, except in the southern States, by substantially reducing the excessive precipitation produced by the CFS. Average precipitation root-mean-square error for CFS and UCLA-ETA are 1.5 and 0.9 mm day?1, respectively. In addition, downscaling improves the simulation of spatial distribution of snow water equivalent and land surface heat fluxes. Despite these large improvements, the UCLA-ETA’s ability to improve the inter-annual and intra-seasonal precipitation variability is not clear, probably because of the imposed CFS’ lateral boundary conditions. Preliminary analysis of the cause for the large precipitation differences between the models reveals that the CFS appears to underestimate the moisture flux convergence despite producing excessive precipitation amounts. Additionally, the comparison of modeled monthly surface sensible and latent heat fluxes with Global Land Data Assimilation System land data set shows that the CFS incorrectly partitioned most of surface energy into evaporation, unlike the UCLA-ETA. These findings suggest that the downscaling improvements are mostly due to a better representation of land-surface processes by the UCLA-ETA. Sensitivity tests also reveal that higher-resolution topography only played a secondary role in the dynamic downscaling improvement.  相似文献   
244.
The mutual influence between two whistler mode waves, through cyclotron resonant interaction of each wave with the same set of energetic electrons, is analysed both theoretically and by computer simulations ; this two-wave interaction mechanism seems to be an important process in understanding recently observed phenomena in Siple Station VLF multi-wave injection experiments. A criterion is established to estimate the threshold for the critical frequency spacing (for given wave amplitudes) for a significant mutual interaction between two monochromatic waves to occur. This criterion is based on the overlap of coherence bandwidths associated with the trapping domains of each wave and it takes into account the geomagnetospheric medium inhomogeneity. The effects of a perturbing second wave on electrons trapped by a first wave is discussed, considering the general situation of varying-frequency waves, and a simulation model is used to track the motion of test-electrons in the two-waves field. Conditions leading to detrapping and subsequent trapping by the second wave of previously first-wave trapped electrons are analysed and suggest the possibility of this phenomenon to play an important role in frequency entrainment and energy exchange between two waves.  相似文献   
245.
While the importance of merging, accretion, and infall processesin determining galactic evolution is well established boththeoretically and observationally, details on how such processesare taking place nowadays even in our own Galaxy are stillrelatively poorly known, especially due to large remaininguncertainties on the location and origin of high velocity clouds.In this paper we focus on the possible role that galacticoutflows and gas infall may have on directly triggering starformation in the halo and in galactic disks. While compellingevidence has been accumulating in recent years suggesting thatsome level of star formation directly triggered by outflows isvery likely to exist in the halo of some galaxies, the evidencefor star formation dynamically triggered by infall is far moreelusive due to confusion with other, more efficient large-scalestar forming mechanisms operating in the galactic disk. Despite ofincreasingly realistic simulations of the gas circulation betwenthe gas and the halo and of high velocity cloud impacts ongalactic disks, the efficiency of star formation directlytriggered by such impacts remains an open question.  相似文献   
246.
The rise of total water levels at the coast is caused primarily by three factors that encompass storm surges, tides and wind waves. The accuracy of total water elevation (TWE) forecast depends not only on the cyclonic track and its intensity, but also on the spatial distribution of winds which include its speed and direction. In the present study, the cyclonic winds are validated using buoy winds for the recent cyclones formed in the Bay of Bengal since 2010 using Jelesnianski wind scheme. It is found that the cyclonic winds computed from the scheme show an underestimate in the magnitude and also a mismatch in its direction. Hence, the wind scheme is suitably modified based on the buoy observations available at different locations using a power law which reduces the exponential decay of winds by about 30%. Moreover, the cyclonic wind direction is also corrected by suitably modifying its inflow angle. The significance of modified exponential factor and inflow angle in the computation cyclonic winds is highlighted using statistical analysis. A hydrodynamic finite element-based Advanced Circulation 2D depth integrated (ADCIRC-2DDI) model is used here to compute TWE as a response to combined effect of cyclonic winds and astronomical tides. As contribution of wave setup plays an important role near the coast, a coupled ADCIRC + SWAN is used to perceive the contribution of wind waves on the TWE. The experiments are performed to validate computed surge residuals with available tide gauge data. On comparison of observed surge residuals with the simulations using modified winds from the uncoupled and coupled models, it is found that the simulated surge residuals are better compared, especially with the inclusion of wave effect through the coupled model.  相似文献   
247.
Trace elements, isotopic modeling and U-Th-Pb SHRIMP zircon age constraints are used to reconstruct the eruption history and magmatic processes of the Piedra Parada Caldera. In the early Eocene, the crystal-poor Barda Colorada ignimbrite(BCI), having 15% micro-porphyritic crystals with respect to magmatic components, erupted a volume estimated in more than 300 km~3. The Piedra Parada caldera is located in the Patagonian Andes foreland, at the southern end of the calderas field of the Pilcaniyeu Volcanic Belt(PVB). This belt is related to an extensional tectonic setting as a result of the collision of the Farallon-Aluk ridge with South America, which enabled the development of a transform ocean/continental plate margin followed by the detachment of the Aluk plate and the opening of a slab window. The BCI extra-caldera Plateau is a 100 m thick deposit, having a lower unit with high silica(Si O_2 76 wt.%),potassium poor rhyolitic composition(trondhjemitic like magma), and an upper unit with normal to high potassium rhyolitic composition(granitic like magma). A trace elements modeling of the BCI units shows that the BCI lower and upper units did not evolve from fractionation or immiscibility in the shallow magma reservoir. The BCI also have a primitive isotopic signature(initial87 Sr/86 Sr =0.7031-0.7049 and ε_(Nd)= +3.4 to +3.65). Thus, tectonic, compositional and isotopic constraints suggest the fast ascent of high silica magmas to a shallow reservoir, and point to an upper mantle origin for these rhyolitic magmas in a transitional(Orogenic-Anorogenic) tectono-magmatic setting. U-Th-Pb SHRIMP zircon crystallization ages of the Syn-caldera stage BCI units(56 -51.5 Ma) show a protracted life of 5 Ma for this caldera reservoir. The age of 52.9 ± 0.3 Ma is considered the best fit for the possible maximum age for the caldera collapse. The Late-caldera magmatism has trachyandesitic and rhyolitic compositions.The trace element modeling suggests that these rhyolites evolve from the trachyandesites and do not evolve from the BCI residual magma. The trachyandesites have U-Th-Pb SHRIMP zircon crystallization ages of 52 ± 1 Ma, suggesting that the caldera eruption was triggered by the arrival of the trachyandesitic magma.  相似文献   
248.
International Journal of Earth Sciences - The Araçuaí-West Congo orogen (AWCO) is one of the various components of the Brasiliano/Pan-African orogenic network generated during the...  相似文献   
249.
Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt–rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35–85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15–20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration.  相似文献   
250.
Satellite free air gravity anomalies over the Indian ocean region 79°E–86°E, 2°S–8°S were obtained from the website http://topex.ucsd.edu and a contour map was compiled. Five profiles of the anomaly have been interpreted in terms of two-dimensional structures in the ocean. Thickness of sediments lying on the oceanic crust determined from the interpretation of gravity profiles were used to compile an isopach map of the region 79°E–86°E, 2°S–8°S. This map in combination with one of the isopach maps compiled by previous workers, provides information regarding the thickness of sediments up to 6° S. According to this map sediment thickness varies from ~600 m over the middle part of the region to ~800 m further south, indicating that thinning of sediments in the middle part of the region is only localized. Information provided by this gravity study may be useful in planning detailed seismological studies to delimit the outer edge of the continental margin of Sri Lanka, defined according to the United Nations Convention of the Law of the Sea (UNCLOS).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号