首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   5篇
地质学   67篇
海洋学   8篇
自然地理   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   15篇
  2012年   2篇
  2011年   4篇
  2010年   7篇
  2009年   8篇
  2008年   6篇
  2007年   5篇
  2006年   9篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有83条查询结果,搜索用时 46 毫秒
41.
Representing one of the largest known (estimated >5 Gt at 1 % Cu and 0.02 % Mo) porphyry system, the Río Blanco-Los Bronces deposit incorporates at least five hypabyssal intrusive and hydrothermal centres, extending for about 5 km from the Río Blanco and Los Bronces mines in the north, through the Don Luis mine, to the Sur Sur mine, La Americana and Los Sulfatos in the south. The new geochronology data, which now include data on different molybdenite vein types, confirm the U–Pb ages of the pre-mineralisation intrusions but slightly increase their age range from 8.8 to 8.2 Ma. The distinct magmatic pulses of the mineralisation-associated porphyritic intrusives (Late Porphyries) indicate an age interval instead of the previously suggested individual ages: the quartz monzonite porphyry ranges from 7.7 to 6.1 Ma (Sur Sur 5.74?±?0.13 Ma), the feldspar porphyry shows an interval from 5.8 to 5.2 Ma and the Don Luis porphyry from 5.2 to 5.0 Ma. The new Re–Os data on distinct molybdenite vein types confirm the protracted history of Cu(–Mo) mineralisation, inferred previously. The vein development occurred at least from 5.94 to 4.50 Ma, indicating a time-span of 1.5 Ma for the hydrothermal activity. Hydrothermal minerals dated by the 40Ar/39Ar method are generally too young to record the age of early, high-temperature mineralisation. The majority of the 40Ar/39Ar data in the Río Blanco porphyry cluster record reheating by either the youngest member of the Late Porphyry suite or the post-mineralisation dacite or rhyolite plug formations at around 4.9–4.7 Ma.  相似文献   
42.
The Curramulka Gabbronorite on Yorke Peninsula, southeastern Gawler Craton has an emplacement age of 1589 ± 5 Ma. This is similar to previously determined ages for Arthurton Granite (1582 ± 7 Ma), Tickera Granite (ca 1600 – 1575 Ma), regional alteration, the Moonta – Wallaroo mineralisation (ca 1585 Ma) and localised deformation (Tiparra Deformation). Mesoproterozoic bimodal plutonism is interpreted to have resulted from mafic underplating, emplacement of mafic magmas during lithospheric attenuation and enhanced high heat flow assisting in melting of the lower crust to form the broadly A-type Arthurton and Tickera Granites. Plutonism either directly or indirectly created advective fluid-flow to form Cu – Au mineralisation in the Moonta – Wallaroo area. The nature and characteristics of Mesoproterozoic mafic bodies on the Gawler Craton are poorly known. The Curramulka Gabbronorite has a continental tholeiitic composition and igneous layering that is partly of cumulus origin but also contains magmatic segregations formed by fractionation. Some of these segregations have provided zircons for dating. This igneous layering is overprinted by two foliations of tectonic origin: the first is interpreted to be coeval with magma emplacement and the second with conjugate shearing accompanied by retrogression.  相似文献   
43.
44.
We present detrital zircon UPb SHRIMP age patterns for the central segment (34–42°S) of an extensive accretionary complex along coastal Chile together with ages for some relevant igneous rocks. The complex consists of a basally accreted high pressure/low temperature Western Series outboard of a frontally accreted Eastern Series that was overprinted by high temperature/low pressure metamorphism. Eleven new SHRIMP detrital zircon age patterns have been obtained for meta-turbidites from the central (34–42°S) segment of the accretionary complex, four from previously undated metamorphic complexes and associated intrusive rocks from the main Andean cordillera, and three from igneous rocks in Argentina that were considered as possible sediment source areas. There are no Mesozoic detrital zircons in the accretionary rocks. Early Paleozoic zircons are an essential component of the provenance, and Grenville-age zircons and isolated grains as old as 3 Ga occur in most rocks, although much less commonly in the Western Series of the southern sector. In the northernmost sector (34–38°30′S) Proterozoic zircon grains constitute more than 50% of the detrital spectra, in contrast with less than 10% in the southern sector (39–42°S). The youngest igneous detrital zircons in both the northern Western (307 Ma) and Eastern Series (345 Ma) are considered to closely date sedimentation of the protoliths. Both oxygen and LuHf isotopic analyses of a selection of Permian to Neoproterozoic detrital zircon grains indicate that the respective igneous source rocks had significant crustal contributions. The results suggest that Early Paleozoic orogenic belts (Pampean and Famatinian) containing material recycled from cratonic areas of South America supplied detritus to this part of the paleo-Pacific coast. In contrast, in the southern exposures of the Western Series studied here, Permian detrital zircons (253–295 Ma) dominate, indicating much younger deposition. The northern sector has scarce Early to Middle Devonian detrital zircons, prominent south of 39°S. The sedimentary protolith of the northern sector was probably deposited in a passive margin setting starved of Devonian (Achalian) detritus by a topographic barrier formed by the Precordillera, and possibly Chilenia, terranes. Devonian subduction-related metamorphic and plutonic rocks developed south of 39°S, beyond the possible southern limit of Chilenia, where sedimentation of accretionary rocks continued until Permian times.  相似文献   
45.
Research conducted by the Western New South Wales Archaeology Program (WNSWAP) provides the opportunity to assess the reliability of optically stimulated luminescence (OSL) dating of late Pleistocene and Holocene fluvial sediments and burnt stone samples from arid zone geoarchaeological contexts. A large number of radiocarbon age determinations of charcoal preserved in heat retainer hearths provides independent chronological control at these contexts. We describe a rapid OSL methodology for dating burnt hearth stones to complement previously applied radiocarbon methods, which we have tested using 37 samples from hearths with radiocarbon determinations. We propose a geoarchaeological model in which these hearths were constructed by people whose activity took place on an archaeological surface, formed by the earlier deposition of fluvial sediments. Here we demonstrate the veracity of this model by dating sediments lying stratigraphically below the hearths, and use the radiocarbon age control and chronological consistency to assess the accuracy and reliability of both small aliquot and single grain single aliquot regenerative-dose (SAR) OSL dating. While small aliquot age estimates are in most cases in agreement with independent control, the single grain determinations using a finite mixture model (FMM) appear to provide improved chronological resolution. Using single grains, we note some problems in the application of the FMM and in the dating of young samples in the range of 1–100 years. As many samples may have resided close to the surface since deposition, we have developed a mathematical function to describe gamma and cosmic dose rate contributions at burial depths down to 40 cm. These OSL age estimates allow us to reject the model of intensification of human activity as responsible for the observed pattern of archaeological radiocarbon determinations in this part of the Australian arid zone.  相似文献   
46.
Permian rhyodacites, melaphyres and tuffs from the Cracow area (South Poland) were sampled for the palaeomagnetic and isotope studies. Single-grain U-Pb dating of most zircon grains separated from the rhyodacites gave mean age of magma emplacement of 294.2 ± 2.1 Ma. Some zircons, however, displayed younger ages (268.7 ± 3.4 Ma), probably related to the metasomatic alterations of these rocks. Two Permian components of magnetizations related to these processes were isolated and together with previously defined Late Carboniferous–Permian palaeomagnetic poles from South Poland were used for construction of the regional apparent polar wander path (APWP). The Early Permian segment of this APWP shows a certain departure from the coeval part of the Fennoscandian APWP due to anticlockwise rotations of studied rocks most probably caused by mid-Permian sinistral tectonic movements along reactivated prominent Variscan faults of Central Europe. This sense of tectonic mobility does not support the hypothesis about transformation from Pangea 'B' to Pangea 'A' along an intra-Pangea dextral megashear during the Permian. Older than previously assumed ages of the post-Variscan igneous rocks of Central Europe reduce overlap of Gondwana's and Laurussia's parts of the Early Permian Pangea 'A'.  相似文献   
47.
The Early Paleozoic evolution of the northern margin of Gondwana is characterized by several episodes of bimodal magmatism intruded or outpoured within thick sedimentary basins. These processes are well recorded in the Variscan blocks incorporated in the Ligurian Alps because they experienced low temperature Alpine metamorphism. During the Paleozoic, these blocks, together with the other Alpine basements, were placed between the Corsica-Sardinia and the Bohemian Massif along the northern margin of Gondwana. In this framework, they host several a variegated lithostratigraphy forming two main complexes(Complexs I and II) that can be distinguished by both the protoliths and their crosscutting relationships, which indicate that the acidic and mafic intrusives of Complex II cut an already folded sequence made of sediments, basalts and granitoids of Complex I. Both complexes were involved in the Variscan orogenic phases as highlighted by the pervasive eclogite-amphibolite facies schistosity(foliation II). However, rare relicts of a metamorphic foliation at amphibolite facies conditions(foliation I)is locally preserved only in the rocks of Complex I. It is debatable if this schistosity was produced during the early folding event e occurred between the emplacement of Complex I and II e rather than during an early stage of the Variscan metamorphic cycle.New SHRIMP and LA ICP-MS Ue Pb zircon dating integrated with literature data, provide emplacement ages of the several volcanic or intrusive bodies of both complexes. The igneous activity of Complex I is dated between 507 ± 15 Ma and 494 ± 5 Ma, while Complex II between 467 ± 12 Ma and 445.5 ± 12 Ma.The folding event recorded only by the Complex I should therefore have occurred between 494 ± 5 Ma and 467 ± 12 Ma. The Variscan eclogite-amphibolite facies metamorphism is instead constrained between ~420 Ma and ~300 Ma. These ages and the geochemical signature of these rocks allow constraining the Early Paleozoic tectono-magmatic evolution of the Ligurian blocks, from a middleeupper Cambrian rifting stage, through the formation of an Early Ordovician volcanic arc during the Rheic Ocean subduction, until a Late Ordovician extension related to the arc collapse and subsequent rifting of the PaleoThetys. Furthermore, the ~420-350 Ma ages from zircon rims testify to thermal perturbations that may be associated with the Silurian rifting-related magmatism, followed by the subduction-collisional phases of the Variscan orogeny.  相似文献   
48.
Abstract. SHRIMP U-Pb ages were determined on single zircons separated from the Inishi migmatite in the Kamioka mining area, Hida metamorphic complex, central Japan. Twenty one determinations were distributed within the age of 234.2±1.8 Ma, excluding one inner core of a grain. As the analyzed crystals were mostly euhedral igneous zircons, the age indicates the crystallization of zircons from granitic melt during the formation of Inishi migmatite. The age of ca. 234 Ma corresponded to the later stage of the major regional metamorphic event in the Hida complex, while the age of ca. 265 Ma determined in a grain suggested the inherited age of the earlier phase of the metamorphism.  相似文献   
49.
The cooling history and therefore thermal structure of oceanic lithosphere in slow-spreading environments is, to date, poorly constrained. Application of thermochronometric techniques to rocks from the very slow spreading SW Indian Ridge provide for the first time a direct measure of the age and thermal history of in situ lower oceanic crust. Crystallization of felsic veins (∼850°C) drilled in Hole 735B is estimated at 11.93±0.14 Ma, based on U-Pb analyses of zircon by ion probe. This crystallization age is older than the ‘crustal age’ from remanence inferred from both sea surface and near-bottom magnetic anomaly data gathered over Hole 735B which indicate magnetization between major normal polarity chrons C5n.2n and C5An.1n (10.949-11.935 Ma). 40Ar/39Ar analyses of biotite give plateau ages between 11 and 12 Ma (mean 11.42±0.21 Ma), implying cooling rates of >800°C/m.y. over the first 500,00 years to temperatures below ∼330-400°C. Fission-track ages on zircon (mean 9.35±1.2 Ma) and apatite reveal less rapid cooling to <110°C by ∼7 Ma, some 4-5 m.y. off axis.Comprehensive thermochronometric data from the structurally intact block of gabbro between ∼700 and 1100 m below sea floor suggest that crust traversed by ODP Hole 735B mimics conductive cooling over the temperature range ∼900-330°C, characteristic of a 2-D plate-cooling model for oceanic lithosphere. In contrast, lower temperature chronometers (fission track on zircon, titanite, and apatite; T≤280°C) are not consistent with these predictions and record anomalously high temperatures for crust >700 m below sea floor at 8-10 Ma (i.e. 2-4 m.y. off axis). We offer two hypotheses for this thermal anomaly:
(i)
Off-axis (or asymmetric) magmatism that caused anomalous reheating of the crust preserved in Hole 735B. This postulated magmatic event might be a consequence of the transtension, which affected the Atlantis II transform from ∼19.5 to 7.5 Ma.
(ii)
Late detachment faulting, which led to significant crustal denudation (2.5-3 km removed), further from the ridge axis than conventionally thought.
  相似文献   
50.
New U–Pb zircon ages and Sr–Nd isotopic data for Triassic igneous and metamorphic rocks from northern New Guinea help constrain models of the evolution of Australia's northern and eastern margin. These data provide further evidence for an Early to Late Triassic volcanic arc in northern New Guinea, interpreted to have been part of a continuous magmatic belt along the Gondwana margin, through South America, Antarctica, New Zealand, the New England Fold Belt, New Guinea and into southeast Asia. The Early to Late Triassic volcanic arc in northern New Guinea intrudes high‐grade metamorphic rocks probably resulting from Late Permian to Early Triassic (ca 260–240 Ma) orogenesis, as recorded in the New England Fold Belt. Late Triassic magmatism in New Guinea (ca 220 Ma) is related to coeval extension and rifting as a precursor to Jurassic breakup of the Gondwana margin. In general, mantle‐like Sr–Nd isotopic compositions of mafic Palaeozoic to Tertiary granitoids appear to rule out the presence of a North Australian‐type Proterozoic basement under the New Guinea Mobile Belt. Parts of northern New Guinea may have a continental or transitional basement whereas adjacent areas are underlain by oceanic crust. It is proposed that the post‐breakup margin comprised promontories of extended Proterozoic‐Palaeozoic continental crust separated by embayments of oceanic crust, analogous to Australia's North West Shelf. Inferred movement to the south of an accretionary prism through the Triassic is consistent with subduction to the south‐southwest beneath northeast Australia generating arc‐related magmatism in New Guinea and the New England Fold Belt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号