Water relation characteristics of the desert legumeAlhagi sparsifolia were investigated during the vegetation period from April to September 1999 in the foreland of Qira oasis at the southern fringe of the Taklamakan Desert, Xinjiang Uygur Autonomous Region of China. The seasonal variation of predawn water potentials and of diurnal water potential indicated thatAlhagi plants were well water supplied over the entire vegetation period. Decreasing values in the summer months were probably attributed to increasing temperatures and irradiation and therefore a higher evapotranspirative demand. Data from pressure-volume analysis confirmed thatAlhagi plants were not drought stressed and xylem sap flow measurements indicated thatAlhagi plants used large amounts of water during the summer months. Flood irrigation had no influence on water relations inAlhagi probably becauseAlhagi plants produced only few fine roots in the upper soil layers. The data indicate thatAlhagi sparsifolia is a drought-avoiding species that utilizes ground water by a deep roots system, which is the key characteristic to adjust the hyper-arid environment. Because growth and survival ofAlhagi depends on ground water supply, it is important that variations of ground water depth are kept to a minimum. The study will provide a theoretical basis for the restoration and management of natural vegetation around oasis in arid regions.
A numerical study for estimating the tidal open boundary conditions of a shelf current modrl from tb coastal tidal observations
is presented. The method is based on the optimal control/adjoint method. A lrast square fitting of the model state to simulated
data is used. Two ideal domains and coastlines are considered. Using the IAP shallow. water model and its adjoint model, some
identical twin experiments are carried out to test efficiency and lirnilsd of the method. The results show that the adjoint
method can efficiently estimate the open boundary conditions well for gulf/bay like domains. The adjoint method seems to have
great potential to improve the accuracy of tide and shelf current modeling in coastal regions.
Project supported hy the National Natural Science Fuundation of China (Grant No. 49376256) 相似文献
Summary As an approach to study the mesoscale processes within a typhoon, an axisymmetric nonhydrostatic numerical model is developed without the use of convective parameterization. Many simulated characteristics are consistent with radar and aircraft observations, such as the maximum of vertical and tangential wind, the inflow concentrated near the surface, the outward slope of the eyewall updraft, etc. The model duplicates not only the outward propagation of mesoscale convective systems, but also the inward movement of convective rings, the rate of which coincides with the observation. Besides, the model gives good simulations of the life cycle of convective rings, and indicates that the convective rings far from the eyewall play important roles in the fluctuation of typhoon intensity. Numerical results also exhibit the existence of coupling between outer and inner core structure.Analyses of the simulations show that convective momentum transport generates local maximum absolute angular momentum in the middle and upper troposphere. The momentum anomaly results in symmetric instability, which provides the environment to form convective rings. While the momentum anomaly moves outward with the outflow in the middle and upper troposphere, it initiates a series of convective rings with aid of other direct factors, which explains the outward propagation of convective systems.The simulations exhibit the life cycle of a typical convective ring in terms of three stages, or the developing, mature and dissipating stage. Analysis shows that the symmetric instability and the convective instability promote each other, and their cooperation makes the life of convective rings longer.With 8 Figures 相似文献
Prediction of coastal hazards due to climate change is fraught with uncertainty that stems from complexity of coastal systems, estimation of sea level rise, and limitation of available data. In-depth research on coastal modeling is hampered by lack of techniques for handling uncertainty, and the available commercial geographical information systems (GIS) packages have only limited capability of handling uncertain information. Therefore, integrating uncertainty theory with GIS is of practical and theoretical significance. This article presents a GIS-based model that integrates an existing predictive model using a differential approach, random simulation, and fuzzy set theory for predicting geomorphic hazards subject to uncertainty. Coastal hazard is modeled as the combined effects of sea-level induced recession and storm erosion, using grid modeling techniques. The method is described with a case study of Fingal Bay Beach, SE Australia, for which predicted responses to an IPCC standard sea-level rise of 0.86 m and superimposed storm erosion averaged 12 m and 90 m, respectively, with analysis of uncertainty yielding maximum of 52 m and 120 m, respectively. Paradoxically, output uncertainty reduces slightly with simulated increase in random error in the digital elevation model (DEM). This trend implies that the magnitude of modeled uncertainty is not necessarily increased with the uncertainties in the input parameters. Built as a generic tool, the model can be used not only to predict different scenarios of coastal hazard under uncertainties for coastal management, but is also applicable to other fields that involve predictive modeling under uncertainty. 相似文献