首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   3篇
测绘学   1篇
大气科学   19篇
地球物理   47篇
地质学   75篇
海洋学   5篇
天文学   9篇
自然地理   16篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   10篇
  2017年   5篇
  2016年   10篇
  2015年   7篇
  2014年   8篇
  2013年   9篇
  2012年   9篇
  2011年   6篇
  2010年   10篇
  2009年   10篇
  2008年   11篇
  2007年   11篇
  2006年   18篇
  2005年   7篇
  2004年   5篇
  2003年   9篇
  2002年   5篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
91.
Recent studies show that SouthEast Indian Ocean (SEIO) SSTs are a highly significant precursor of transitions of the whole monsoon-El Niño-Southern Oscillation (ENSO) system during recent decades. However, the reasons for this specific interannual variability have not yet been identified unequivocally from the observations. Among these, the possibility of SEIO SST-driven variability in the monsoon-ENSO system is investigated here by inserting positive/negative SEIO temperature anomalies in the February’s restart files of a state-of-the-art coupled General Circulation Model (GCM) for 49 years of a control simulation. For each year of the control simulation, the model was then integrated for a 1-year period in fully coupled mode. These experiments show that Indian Summer Monsoon (ISM) and tropical Indian Ocean Dipole Mode (IODM) events are significantly influenced by the SEIO temperature perturbations inserted in the mixed layer of the coupled GCM several months before. A warm SEIO perturbation, inserted in late boreal winter, slowly propagates northward during the following seasons, implies enhanced ISM rainfall and finally triggers a negative IODM pattern during boreal fall in agreement with observations. A reversed evolution is simulated for a cold SEIO perturbation. It is shown that the life cycle of the simulated SEIO signal is driven by the positive wind-evaporation-SST, coastal upwelling and wind-thermocline-SST feedbacks. Further diagnosis of the sensitivity experiments suggests that stronger ISM and IODM variabilities are generated by excluding the El Niño years of the control simulation or when the initial background state in the SEIO is warmer. This finding confirms that IODM events may be triggered by multiple factors, other than ENSO, including subtropical SEIO SST anomalies. However, the ENSO mode does not react significantly to the SEIO temperature perturbation in the perturbed runs even though the simulated Pacific pattern agrees with the observations during boreal fall. These discrepancies with the observations may be linked to model biases in the Pacific and to the too strong ENSO simulated by this coupled GCM. These modeling evidences confirm that subtropical Indian Ocean SST anomalies generated by Mascarene high pulses during austral summer are a significant precursor of both ISM and IODM events occuring several months later.  相似文献   
92.
Accelerometric data from the well-studied valley EUROSEISTEST are used to investigate ground motion uncertainty and variability. We define a simple local ground motion prediction equation (GMPE) and investigate changes in standard deviation (σ) and its components, the between-event variability (τ) and within-event variability (φ). Improving seismological metadata significantly reduces τ (30–50%), which in turn reduces the total σ. Improving site information reduces the systematic site-to-site variability, φ S2S (20–30%), in turn reducing φ, and ultimately, σ. Our values of standard deviations are lower than global values from literature, and closer to path-specific than site-specific values. However, our data have insufficient azimuthal coverage for single-path analysis. Certain stations have higher ground-motion variability, possibly due to topography, basin edge or downgoing wave effects. Sensitivity checks show that 3 recordings per event is a sufficient data selection criterion, however, one of the dataset’s advantages is the large number of recordings per station (9–90) that yields good site term estimates. We examine uncertainty components binning our data with magnitude from 0.01 to 2 s; at smaller magnitudes, τ decreases and φ SS increases, possibly due to κ and source-site trade-offs Finally, we investigate the alternative approach of computing φ SS using existing GMPEs instead of creating an ad hoc local GMPE. This is important where data are insufficient to create one, or when site-specific PSHA is performed. We show that global GMPEs may still capture φ SS , provided that: (1) the magnitude scaling errors are accommodated by the event terms; (2) there are no distance scaling errors (use of a regionally applicable model). Site terms (φ S2S ) computed by different global GMPEs (using different site-proxies) vary significantly, especially for hard-rock sites. This indicates that GMPEs may be poorly constrained where they are sometimes most needed, i.e., for hard rock.  相似文献   
93.
Altimetry missions such as Topex/Poseidon, Jason-1, GFO and ENVISAT have been widely used in the continental domain over lakes, rivers and wetland although they were mostly dedicated to oceanic studies. Knowledge of the instrumental biases is a key issue. Numerous sites have been dedicated to calibration purposes, either in the oceanic domain (Harvest offshore platform in California, Corsica, Bass Strait in Australia) or over lakes (Lake Erie in United States). A new site (Lake Issykkul in Kirghizstan) is proposed for calibration in the continental domain. This lake is covered by past (T/P) and current radar altimetry satellites (Jason-1, T/P, GFO, and ENVISAT). Several in situ water levels and local meteorological variables are available at the site. Located in a mountainous area, it offers an opportunity for calibration far away from all other existing sites and very different environment contexts. Two GPS campaigns have been conducted on the lake in 2004 and in 2005. They consisted of cruises with stations installed onboard a boat following the satellite ground tracks, and onshore settings. This enabled estimating a bias for each altimeter and each tracking algorithm available. Biases obtained for Envisat, GFO, T/P and Jason-1 using the default ocean tracker (respectively, 48.1 ± 6.6, 7.5 ± 4.0, 0 ± 4.3 and 7.0 ± 5.5 cm) agree with biases published at the other calibration sites. For Jason-1, there is a significant disagreement with results obtained in the ocean field (7 cm instead of 13 cm) but is coherent with bias obtained on the Lake Erie site. Erroneous estimates of the sea state bias correction from non-oceanic-like waveforms is discussed as a possible explanation. Errors in the ionospheric, wet and dry tropospheric corrections for the continental domain are also highlighted and quantified.  相似文献   
94.
The dispersion of heavy particles and pollutants is often simulated with Lagrangian stochastic (LS) models. Although these models have been employed successfully over land, the free surface at the air-sea interface complicates the implementation of traditional LS models. We present an adaptation of traditional LS models to the atmospheric marine boundary layer (MBL), where the bottom boundary is represented by a realistic wavy surface that moves and deforms. In addition, the correlation function for the turbulent flow following a particle is extended to the anisotropic, unsteady case. Our new model reproduces behaviour for Lagrangian turbulence in a stratified air flow that departs only slightly from the expected behaviour in isotropic turbulence. When solving for the trajectory of a heavy particle in the air flow, the modelled turbulent forcing on the particle also behaves remarkably well. For example, the spectrum of the turbulence at the particle location follows that of a massless particle for time scales approximately larger than the Stokes’ particle response time. We anticipate that this model will prove especially useful in the context of sea-spray dispersion and its associated momentum, sensible and latent heat, and gas fluxes between spray droplets and the atmosphere.  相似文献   
95.
This paper evaluates the performances of four cyclogenesis indices against observed tropical cyclone genesis on a global scale over the period 1979–2001. These indices are: the Genesis Potential Index; the Yearly Genesis Parameter; the Modified Yearly Convective Genesis Potential Index; and the Tippett et al. Index (J Clim, 2011), hereafter referred to as TCS. Choosing ERA40, NCEP2, NCEP or JRA25 reanalysis to calculate these indices can yield regional differences but overall does not change the main conclusions arising from this study. By contrast, differences between indices are large and vary depending on the regions and on the timescales considered. All indices except the TCS show an equatorward bias in mean cyclogenesis, especially in the northern hemisphere where this bias can reach 5°. Mean simulated genesis numbers for all indices exhibit large regional discrepancies, which can commonly reach up to ±50%. For the seasonal timescales on which the indices are historically fitted, performances also vary widely in terms of amplitude although in general they all reproduce the cyclogenesis seasonality adequately. At the seasonal scale, the TCS seems to be the best fitted index overall. The most striking feature at interannual scales is the inability of all indices to reproduce the observed cyclogenesis amplitude. The indices also lack the ability to reproduce the general interannual phase variability, but they do, however, acceptably reproduce the phase variability linked to El Ni?o/Southern Oscillation (ENSO)—a major driver of tropical cyclones interannual variations. In terms of cyclogenesis mechanisms that can be inferred from the analysis of the index terms, there are wide variations from one index to another at seasonal and interannual timescales and caution is advised when using these terms from one index only. They do, however, show a very good coherence at ENSO scale thus inspiring confidence in the mechanism interpretations that can be obtained by the use of any index. Finally, part of the gap between the observed and simulated cyclogenesis amplitudes may be attributable to stochastic processes, which cannot be inferred from environmental indices that only represent a potential for cyclogenesis.  相似文献   
96.
The mechanical efficiency of the biocementation process is directly related to the microstructural properties of the biocemented sand, such as the volume fraction of calcite, its distribution within the pore space, coordination number, contact surface area, and types of contact. In the present work, some of these microscopic properties are computed, from 3D images obtained by X-ray tomography of biocemented sand. These properties are then used as an input in current analytical models to estimate the elastic properties (Young and shear moduli) and the strength properties (Coulomb cohesion). For the elastic properties, the analytical estimates (contact cement theory model) are compared with classical bounds, self-consistent estimate and numerical results obtained by direct computation (FEM computation) on the same 3D images. Concerning the cohesion, an analytical model initially developed to estimate the cohesion due to suction in unsaturated soils is modified to evaluate the macroscopic cohesion of biocemented sands. Such analytical model is calibrated on experimental data obtained from triaxial tests performed on the same biocemented sand. In overall, the presented results point out the important role of some microstructural parameters, notably those related to the contact, on such effective parameters.  相似文献   
97.
Spectroscopic analysis of carbonate-bearing samples from a variety of terrestrial environments provides important insights into spectroscopy-based investigations of Mars designed to detect the presence of carbonate minerals. In order to better address the spectral detectability of carbonates on Mars, we examined the spectral reflectance properties of carbonates and carbonate-bearing lithologies from a variety of terrestrial environments, including impact structures (Haughton, St. Martin, Eagle Butte), landslides (Frank), quarrying operations (Hecla), carbonates affected by weathering (Haughton, East German Creek), and sulfide-sulfate-carbonate assemblages (Central Manitoba). The goal is to identify processes and environments that can affect spectroscopy-based carbonate detection, for more detailed follow-on studies. Common carbonates appear to be stable, from a spectroscopic perspective, to various tectonic processes. Iron oxides/hydroxides do not appear to significantly affect spectral detectability of carbonates, as the spectrum-altering effects of these phases are largely restricted to the region below ∼1 μm, while useful carbonate absorption bands occur longward of ∼1.8 μm. Carbonate detection and characterization in the 0.35-2.5-μm region is largely restricted to a single absorption feature in the 2.3-μm region, which can be problematic for robust carbonate identification. While tectonic processes and iron oxide/hydroxide staining do not appear to significantly impair carbonate detection based on the 2.3-μm region absorption band, a number of other factors can affect carbonate detection. These include the fact that this absorption band is weak compared to many other minerals, a number of other minerals also exhibit absorption bands in this wavelength region (leading to possible misidentifications), and that even small abundances of minerals that absorb strongly in this region will reduce the strength of the carbonate absorption band. Identifying the nature of accessory minerals associated with carbonates can be used to constrain possible formation environments. Ongoing research at carbonate-bearing terrestrial analogue sites will continue to provide new insights into the occurrence and detection of carbonates on Mars.  相似文献   
98.
Fluvial systems tend to deposit sediment in well-defined relational geometries and in vertically and laterally repeating patterns. These sedimentary deposits are preserved to varying degrees depending on how much the fluvial system reworks the deposits. The Paskapoo bedrock aquifer system in southern Alberta, Canada, was deposited in a foreland depositional basin during uplift of the Rocky Mountains, and both the geomorphic model and field evidence indicate that the upper 100 m of the local aquifer system contains well-preserved, highly connected paleo-channels and associated overbank deposits. In order to evaluate the value of different types of data, a simplified stochastic-numerical groundwater flow model was developed to examine the sensitivity of results to model parameters. Parameters examined include: fraction of the formation made up of channel sands; meander and sinuosity factors; width-to-depth ratios of preserved channels; and crevasse splay conductivity. In all cases examined, the system exhibited anisotropic behavior with the along-channel flow direction being the most permeable and the vertical direction being least permeable. In general, the strongest control on the resulting effective anisotropic hydraulic conductivities was channel fraction, but geometric factors that control between-channel connectivity (e.g., channel sinuosity) had an appreciable effect on the across-channel flow direction effective permeability.  相似文献   
99.
Zn and Cd concentrations, stable lead isotopes and 210Pb-derived chronology were determined in a sediment core sampled at Sepetiba Bay (South-eastern Brazil). During the last decades, the bay’s watershed has been modified by the increase of industrial activities and human interventions. In particular, Zn and Cd ore treatment plants were built near the coast in 1960 and 1970, respectively, and water has been diverted from the adjacent Paraíba do Sul River watershed since 1950. The core collected at shallow depth near the industrial area exhibits four successive events: (i) at 50 cm depth, a change in the 206Pb/207Pb ratio from about 1.162 to more than 1.18 might be the result of the São Francisco Channel opening and water diversion from Paraíba do Sul river; (ii) at 40 cm depth, Zn concentration starts to increase (up to 0.8 mg g−1) (iii) above 30 cm depth, relatively high Cd concentrations (up to 1.6 μg g−1) are observed and (iv) at 16 cm depth, change in unsupported 210Pb slope is probably related to a waste dam built to prevent strong metal contamination in the bay. Sediment accumulation rates evaluated by Zn and Cd profiles used as time-markers are higher than those calculated from 210Pb-based chronology models. Using the constant initial concentration (CIC) model both events are supposed to date back to about 1884 and 1902, respectively, while using the constant rate of supply (CRS) model it shifts to about 1925 and 1935. Such discrepancies are probably assigned to the fact that these models do not take into account site-specific local sedimentation dynamics. In the study area, particles deposition seems to be controlled by enrichment with unsupported 210Pb transported by runoff from a mangrove flat bank. Chronology derived from a model that assumes an exponential increase of the initial 210Pb activity fits well with the estimated rates obtained from historical events.  相似文献   
100.
Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of “soil” phytoliths ( at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pHIEP = 1.2 ± 0.1 and 2.5 ± 0.2 for “soil” (native) and “heated” (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-pK surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ? pH ? 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation:
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号