首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   3篇
测绘学   1篇
大气科学   19篇
地球物理   46篇
地质学   60篇
海洋学   5篇
天文学   8篇
自然地理   13篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   10篇
  2017年   5篇
  2016年   9篇
  2015年   6篇
  2014年   6篇
  2013年   9篇
  2012年   8篇
  2011年   5篇
  2010年   7篇
  2009年   7篇
  2008年   9篇
  2007年   10篇
  2006年   15篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
排序方式: 共有152条查询结果,搜索用时 31 毫秒
61.
An experimental study has been performed to investigate the effect of the biocalcification process on the microstructural and the physical properties of biocemented Fontainebleau sand samples. The microstructural properties (porosity, volume fraction of calcite, total specific surface area, specific surface area of calcite, etc.) and the physical properties (permeability, effective diffusion) of the biocemented samples were computed for the first time from 3D images with a high-resolution images obtained by X-ray synchrotron microtomography. The evolution of all these properties with respect to the volume fraction of calcite is analysed and compared with success to experimental data, when it is possible. In general, our results point out that all the properties are strongly affected by the biocalcification process. Finally, all these numerical results from 3D images and experimental data were compared to numerical values or analytical estimates computed on idealized microstructures constituted of periodic overlapping and random non-overlapping arrangements of coated spheres. These comparisons show that these simple microstructures are sufficient to capture and to predict the main evolution of both microstructural and physical properties of biocemented sands for the whole range of volume fraction of calcite investigated.  相似文献   
62.
The growth of segregated ice lenses in frost susceptible sediments in the discontinuous permafrost zone is the dominant mechanism for the formation of permafrost mounds, such as palsas, lithalsas and permafrost plateaus. Thawing of these mounds creates thermokarst lakes, which are particularly abundant in Nunavik, east of the Hudson Bay area. The inception of the permafrost in mounds and their growth are regulated by climate conditions, by local Quaternary geology and by environmental factors such as topography, vegetation, snow cover and surface humidity. Variable sizes and morphology of the permafrost mounds can be attributed to local factors that affect the ice segregation process, particularly the supply of water needed for ice‐lens growth and grain‐size composition of the soil into which aggradation takes place. Computer image analysis of CT scans on high quality cores obtained from permafrost mounds and plateaus of various shapes reveal that the ice layer sequences and permafrost internal structure vary with landform types. A relationship therefore exists between different morphological type within a family of landforms and their microscale internal structure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
63.
The influence of the morphological setting on the denudation of carbonate landscapes and the respective contributions of mechanical and chemical weathering processes are still debated. We have addressed these questions by measuring 36Cl concentrations in 40 samples from the Luberon mountain, SE France, to constrain the denudation of various landscape elements. We observe a clear contrast between the local denudation rates from the flat summit surface, clustered around 30 mm/ka, and the basin‐average denudation rates across the flanks, ranging from 100 to 200 mm/ka. This difference highlights the transient evolution of the range, whose topography is still adjusting to previous uplift events. Such a pattern also suggests that carbonate dissolution is not the only driver of denudation in this setting, which appears to be significantly controlled by slope‐dependent processes.  相似文献   
64.
In a concrete structure subjected to an explosion, for example a concrete slab, the material is subjected to various states of stress which lead to many modes of rupture. Closer to the explosive, a state of strong hydrostatic compression is observed. This state of stress produces an irreversible compaction of the material. Away from the zone of explosion, confinement decreases and the material undergoes compression with a state of stress, which is slightly triaxial. Finally, the compression wave can be reflected on a free surface and becomes a tensile wave, which by interaction with the compression wave, produces scabbing. We present, in this paper, a model aimed at describing these three failure modes. It is based on visco‐plasticity and rate dependent damage in which a homogenization method is used in order to include the variation of the material porosity due to compaction. The model predictions are compared with several experiments performed on the same concrete. Computations of split Hopkinson tests on confined concrete, a tensile test with scabbing, and an explosion on a concrete slab are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
65.
We have hindcast the wind and wave conditions in the Mediterranean Sea for two one month periods. Four different meteorological models and three different wave models have been used. The results have been compared with satellite and buoy wind and wave observations.Several conclusions concerning both the instruments and the models have been derived. The quality of both wind and wave results has been assessed. Close to the coasts high resolution, nested wave models are required for sufficient reliability.A wave threshold analysis suggests a sufficient reliability only off the coast, with a substantial decrease for low wave heights.  相似文献   
66.
The mid-term safety of deep geological nuclear waste repositories is based in part on the presence of a buffer, the main role of which is to isolate the environment from radionuclides. A design evaluation of such a repository is necessary to assess the potential vertical canister movement inside the drift that could reduce the buffer efficiency. A thermo-hydro-mechanical (THM) simulation is performed in a vertical cross-section of the drift. The THM couplings are described, and their influences on the mid-term (300 years) response of the engineered barrier system (EBS) are revealed. This study uses an advanced constitutive model to simulate the THM processes that occur in a specific EBS design case. The near-field simulations of the nuclear waste canister are performed in a two-dimensional finite element configuration that considers the effect of gravity. The focus of this study is on the mechanical behaviour of the buffer, which consists of two different forms of bentonite. Such an approach allows realistic consideration of the effect of the wetting and drying of the buffer material in non-isothermal conditions. Due to a specific design that includes bentonite blocks and pellets, the canister is observed to heave slightly during the re-saturation period, which extends up to 100 years.  相似文献   
67.
This article presents comparisons among the five ground-motion models described in other articles within this special issue, in terms of data selection criteria, characteristics of the models and predicted peak ground and response spectral accelerations. Comparisons are also made with predictions from the Next Generation Attenuation (NGA) models to which the models presented here have similarities (e.g. a common master database has been used) but also differences (e.g. some models in this issue are nonparametric). As a result of the differing data selection criteria and derivation techniques the predicted median ground motions show considerable differences (up to a factor of two for certain scenarios), particularly for magnitudes and distances close to or beyond the range of the available observations. The predicted influence of style-of-faulting shows much variation among models whereas site amplification factors are more similar, with peak amplification at around 1s. These differences are greater than those among predictions from the NGA models. The models for aleatory variability (sigma), however, are similar and suggest that ground-motion variability from this region is slightly higher than that predicted by the NGA models, based primarily on data from California and Taiwan.  相似文献   
68.
In this work, the influence of non-equilibrium effects on solute transport in a weakly heterogeneous medium is discussed. Three macro-scale models (upscaled via the volume averaging technique) are investigated: (i) the two-equation non-equilibrium model, (ii) the one-equation asymptotic model and (iii) the one-equation local equilibrium model. The relevance of each of these models to the experimental system conditions (duration of the pulse injection, dispersivity values…) is analyzed. The numerical results predicted by these macroscale models are compared directly with the experimental data (breakthrough curves). Our results suggest that the preasymptotic zone (for which a non-Fickian model is required) increases as the solute input pulse time decreases. Beyond this limit, the asymptotic regime is recovered. A comparison with the results issued from the stochastic theory for this regime is performed. Results predicted by both approaches (volume averaging method and stochastic analysis) are found to be consistent.  相似文献   
69.
Ship-based acoustic Doppler current profiler (ADCP) velocity measurements collected by several major field programs in the tropical Atlantic are averaged and combined with estimates of the mean near-surface velocity derived from drifters and Argo float surface drifts (ADCP+D) to describe the mean cross-equatorial and vertical structure of the meridional currents along 23°W and 10°W. Data from moored ADCPs and fixed-depth current meters, a satellite-derived velocity product, and a global ocean reanalysis were additionally used to evaluate the mean ADCP+D meridional velocity. The dominant circulation features in the long-term mean ADCP+D meridional velocity in the upper 100 m are the tropical cells (TCs) located approximately between 5°S and 5°N, with near-surface poleward flow and subsurface equatorward flow that is stronger and shallower in the northern cell compared to the southern cell. The thickness of the surface limb of the TCs decreases and the northern cell is found to shift further south of the equator from the central to eastern tropical Atlantic. Analysis of two-season means estimated from the ship-based ADCP, near-surface drift, and moored velocity data, as well as the simulated fields, indicates that the maximum poleward velocity in the surface limb of the TCs intensifies during December–May along 23°W largely due to seasonal compensation between the geostrophic and ageostrophic (or wind-driven) components of the meridional velocity, whereas the maximum equatorward flow in the subsurface limb of the northern cell intensifies during June–November along both 23°W and 10°W due to the seasonality of the geostrophic meridional velocity.  相似文献   
70.
The ability of General Circulation Models (GCMs) to generate Tropical Cyclones (TCs) over the North Atlantic Main Development Region (MDR; 10–20°N, 20–80°W; Goldenberg and Shapiro in J Clim 9:1169–1187, 1996) is examined through a subset of ocean–atmosphere coupled simulations from the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel data set and a high-resolution (0.5°) Sea Surface Temperature (SST)-forced simulation from the Australian Conformal-Cubic Atmospheric Model GCM. The results are compared with National Center for Environmental Prediction (NCEP-2) and European Center for Medium Range Weather Forecasts Re-Analysis (ERA-40) reanalyses over a common period from 1980 to 1998. Important biases in the representation of the TC activity are encountered over the MDR. This study emphasizes the strong link in the GCMs between African Easterly Waves (AEWs) and TC activity in this region. However, the generation of AEWs is not a sufficient condition alone for the models to produce TCs. Precipitation over the Sahel, especially rainfall over the Fouta Djallon highlands (cf. Fig.?1), is playing a role in the generation of TCs over the MDR. The influence of large-scale fields such as SST, vertical wind shear and tropospheric humidity on TC genesis is also examined. The ability of TC genesis indices, such as the Genesis Potential Index and the Convective Yearly Genesis Potential, to represent TC activity over the MDR in simulations at low to high spatial resolutions is analysed. These indices are found to be a reasonable method for comparing cyclogenesis in different models, even though other factors such as AEW activity should also be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号