首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   19篇
  国内免费   4篇
测绘学   16篇
大气科学   15篇
地球物理   113篇
地质学   90篇
海洋学   31篇
天文学   54篇
综合类   2篇
自然地理   19篇
  2024年   1篇
  2021年   11篇
  2020年   9篇
  2019年   7篇
  2018年   11篇
  2017年   15篇
  2016年   26篇
  2015年   14篇
  2014年   17篇
  2013年   21篇
  2012年   24篇
  2011年   23篇
  2010年   22篇
  2009年   26篇
  2008年   15篇
  2007年   14篇
  2006年   11篇
  2005年   18篇
  2004年   11篇
  2003年   10篇
  2002年   6篇
  2001年   5篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1988年   2篇
  1983年   1篇
排序方式: 共有340条查询结果,搜索用时 0 毫秒
271.
The computation of the representative ground motions, to be used as input for the dynamic analyses of a structure at a particular site, can be approached by several methods. The choice of the approach depends on two factors : the data available and the type of problem to be solved. This paper reports the experience of the authors in approaching a specific case study: the Southern Memnon Colossus, located in Luxor, Egypt. The results are of interest when the hazard analysis estimation in developing countries and the safeguard of cultural heritage are concerned. Monuments have to be treated as important structures, due to their historical and economical value. Hence, standard procedures of probabilistic seismic hazard analysis for the seismic classification of common buildings have to be disregarded. On the other hand, the consequences of the collapse of a monument are not comparable to those related to structures such as nuclear power plants and large dams, for which the deterministic seismic hazard analysis provides a straightforward framework for evaluation of the worst case ground motions. An “intermediate” approach, which requires a lower amount of input data with respect to the deterministic one, is adopted. Its stochastic component can capture significant characteristics of earthquakes, primarily the frequency contents which depend on the magnitude (often referred to as the earthquake scaling law). Supported by: European Union-ICA3-1999-00006  相似文献   
272.
Self-potential is a passive geophysical method that can be applied in a straightforward manner with minimum requirements in the field. Nonetheless, interpretation of self-potential data is particularly challenging due to the inherited non-uniqueness present in all potential methods. Incorporating information regarding the target of interest can facilitate interpretation and increase the reliability of the final output. In the current paper, a novel method for detecting multiple sheet-like targets is presented. A numerical framework is initially described that simulates sheet-like bodies in an arbitrary 2D resistivity distribution. A scattered field formulation based on finite differences is employed that allows the edges of the sheet to be independent of the grid geometry. A novel analytical solution for two-layered models is derived and subsequently used to validate the accuracy of the proposed numerical scheme. Lastly, a hybrid optimization is proposed that couples linear least-squares with particle-swarm optimization in order to effectively locate the edges of multiple sheet-like bodies. Through numerical and real data, it is proven that the hybrid optimization overcomes local minimal that occurs in complex resistivity distributions and converges substantially faster compared to traditional particle-swarm optimization.  相似文献   
273.
The NCEP twentieth century reanalyis and a 500-year control simulation with the IPSL-CM5 climate model are used to assess the influence of ocean-atmosphere coupling in the North Atlantic region at seasonal to decadal time scales. At the seasonal scale, the air-sea interaction patterns are similar in the model and observations. In both, a statistically significant summer sea surface temperature (SST) anomaly with a horseshoe shape leads an atmospheric signal that resembles the North Atlantic Oscillation (NAO) during the winter. The air-sea interactions in the model thus seem realistic, although the amplitude of the atmospheric signal is half that observed, and it is detected throughout the cold season, while it is significant only in late fall and early winter in the observations. In both model and observations, the North Atlantic horseshoe SST anomaly pattern is in part generated by the spring and summer internal atmospheric variability. In the model, the influence of the ocean dynamics can be assessed and is found to contribute to the SST anomaly, in particular at the decadal scale. Indeed, the North Atlantic SST anomalies that follow an intensification of the Atlantic meridional overturning circulation (AMOC) by about 9 years, or an intensification of a clockwise intergyre gyre in the Atlantic Ocean by 6 years, resemble the horseshoe pattern, and are also similar to the model Atlantic Multidecadal Oscillation (AMO). As the AMOC is shown to have a significant impact on the winter NAO, most strongly when it leads by 9 years, the decadal interactions in the model are consistent with the seasonal analysis. In the observations, there is also a strong correlation between the AMO and the SST horseshoe pattern that influences the NAO. The analogy with the coupled model suggests that the natural variability of the AMOC and the gyre circulation might influence the climate of the North Atlantic region at the decadal scale.  相似文献   
274.
In phenological studies, plant development and its relationship with meteorological conditions are considered in order to investigate the influence of climatic changes on the characteristics of many crop species. In this work, the impact of climate change on the flowering of the olive tree (Olea europaea L.) in Calabria, southern Italy, has been studied. Olive is one of the most important plant species in the Mediterranean area and, at the same time, Calabria is one of the most representative regions of this area, both geographically and climatically. The work is divided into two main research activities. First, the behaviour of olive tree in Calabria and the influence of temperature on phenological phases of this crop are investigated. An aerobiological method is used to determine the olive flowering dates through the analysis of pollen data collected in three experimental fields for an 11-year study period (1999–2009). Second, the study of climate change in Calabria at high spatial and temporal resolution is performed. A dynamical downscaling procedure is applied for the regionalization of large-scale climate analysis derived from general circulation models for two representative climatic periods (1981–2000 and 2081–2100); the A2 IPCC scenario is used for future climate projections. The final part of this work is the integration of the results of the two research activities to predict the olive flowering variation for the future climatic conditions. In agreement with our previous works, we found a significant correlation between the phenological phases and temperature. For the twenty-first century, an advance of pollen season in Calabria of about 9?days, on average, is expected for each degree of temperature rise. From phenological model results, on the basis of future climate predictions over Calabria, an anticipation of maximum olive flowering between 10 and 34?days is expected, depending on the area. The results of this work are useful for adaptation and mitigation strategies, and for making concrete assessments about biological and environmental changes.  相似文献   
275.
This paper analyzes the transition costs of moving towards a low carbon society when the second-best nature of the economy is accounted for. We emphasize the consequences on mitigation costs of considering the interplay between a) technical systems inertia, including slow infrastructure turnover in transportation and construction; and b) imperfect foresight influencing investment decisions. To this end, the hybrid general equilibrium modeling framework Imaclim-R is employed as it allows for transitory partial adjustments of the economy and captures their impact on the dynamics of economic growth. The modeling exercise quantitatively emphasizes the a) specific risks that the interplay between inertia and imperfect foresight leads to high macroeconomic costs of carbon abatement measures; b) opportunities of co-benefits from climate policies permitted by the correction of sub-optimalities in the reference scenarios. The article draws insights for the framing of future climate architectures by studying the role of measures that act complementarily to carbon pricing in the transport sector. In particular, reallocating public investment towards low-carbon transport infrastructure significantly reduces the overall macroeconomic costs of a given GHG stabilization target and even creates the room for long-term net economic benefits from climate policies.  相似文献   
276.
277.
Earthquake‐induced pounding of adjacent structures can cause severe structural damage, and advanced probabilistic approaches are needed to obtain a reliable estimate of the risk of impact. This study aims to develop an efficient and accurate probabilistic seismic demand model (PSDM) for pounding risk assessment between adjacent buildings, which is suitable for use within modern performance‐based engineering frameworks. In developing a PSDM, different choices can be made regarding the intensity measures (IMs) to be used, the record selection, the analysis technique applied for estimating the system response at increasing IM levels, and the model to be employed for describing the response statistics given the IM. In the present paper, some of these choices are analyzed and evaluated first by performing an extensive parametric study for the adjacent buildings modeled as linear single‐degree‐of‐freedom systems, and successively by considering more complex nonlinear multi‐degree‐of‐freedom building models. An efficient and accurate PSDM is defined using advanced intensity measures and a bilinear regression model for the response samples obtained by cloud analysis. The results of the study demonstrate that the proposed PSDM allows accurate estimates of the risk of pounding to be obtained while limiting the number of simulations required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
278.
The Gran Sasso range is a striking salient formed by two roughly rectilinear E–W and N–S limbs. In the past 90° counterclockwise (CCW) rotations from the eastern Gran Sasso were reported [Tectonophysics 215 (1992) 335], suggesting west–east increase of rotation-related northward shortening along the E–W limb. In this paper, we report on paleomagnetic data from Meso-Cenozoic sedimentary dykes and strata cropping out at Corno Grande (central part of the E–W Gran Sasso limb), the highest summit of the Apennine belt. Predominant northwestward paleomagnetic declinations (in the normal polarity state) from both sedimentary dykes and strata are observed. When compared to the expected declination values for the Adriatic foreland, our data document no thrusting-related rotation at Corno Grande. The overall paleomagnetic data set coupled with the available geological information shows that the Gran Sasso arc is in fact a composite structure, formed by an unrotated-low shortening western (E–W trending) limb and a strongly CCW rotated eastern salient. Late Messinian and post-early Pliocene shortening episodes documented along the Gran Sasso front indicate that belt building and arc formation occurred during two distinct episodes. We suggest that the southern part of a late Messinian N–S front was reactivated during early–middle Pliocene time, forming a tight range salient due to CCW rotations and differential along-front shortening rates. The formation of a northward displacing bulge in an overall NW–SE chain is likely a consequence of the collision between the Latium-Abruzzi and Apulian carbonate platforms during northeastward propagation of the Apennine wedge, inducing lateral northward extrusion of Latium-Abruzzi carbonates towards ductile basinal sediment areas.  相似文献   
279.
Epigenetic gold mineralization occurs in the Marmato mining district, within the Calima Terrain of the Setentrional Andes, Colombia. Regional rocks associated with this mineralization include: graphite- and chlorite-schists of the Arquia Complex; metamorphosed during the Cretaceous, Miocene sandstones, shales and conglomerates of the Amagá Formation; as well as pyroclastic rocks (clasts of basalt, andesites and mafic lavas) and subvolcanic andesitic/dacitic bodies of the Combia Formation (9 to 6 Ma). The subvolcanic Marmato stock hosts mesothermal and epithermal low-sulfidation Au–Ag ores in the form of distensional veins, stockwork, and quartz veinlets within brecciated zones. Ore minerals are pyrite, sphalerite and galena with subordinate chalcopyrite, arsenopyrite, pyrrhotite, argentite and native gold/electrum.Sericitized plagioclase from a porphyry dacite yielded a K–Ar age of 5.6 ± 0.6 Ma, interpreted as the age of ore deposition. This is in close agreement with the age of reactivation of the Cauca–Romeral Fault System (5.6 ± 0.4 Ma), which bounds the Calima Terrain. A porphyry andesite–dacite (6.7 ± 0.1 Ma), hosting the Au–Ag veins, shows a measured 87Sr/86Sr between 0.70440 and 0.70460, εNd between + 2.2 and + 3.2 and 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 18.964 to 19.028; 15.561 to 15.570; and 38.640 to 38.745, respectively. The 87Sr/86Sr and εNd values of rocks from the Arquia Group range from 0.70431 to 0.73511 and − 12.91 to + 10.0, respectively, whereas the corresponding Pb isotopic ratios (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) range from 18.948 to 19.652; 15.564 to 15.702; and 38.640 to 38.885, respectively. 87Sr/86Sr and εNd values obtained on sulfides from the gold quartz veins, which occur at shallow and intermediate levels, range from 0.70500 to 0.71210 and from − 1.11 to + 2.40. In the deepest veins, εNd values lie between + 1.25 and + 3.28 and the 87Sr/86Sr of calcite and pyrite fall between 0.70444 and 0.70930. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of all mineralization are in the ranges 18.970 to 19.258; 15.605 to 15.726 and 38.813 to 39.208, respectively. Carbonates have an average 87Sr/86Sr ratio of 0.70445, which is within the range of values measured in the host dacite. The Sr isotopic data indicate that carbonic fluids have a restricted hydrothermal circulation within the host igneous body, while the Sr, Pb and Nd isotopic compositions of the sulfides suggest that the fluids not only circulated within the Marmato stock, but also throughout the Arquia Complex, inferring that these rocks offer a potential target for mineral exploration. Based on geological and geochronological evidence, the epizonal Marmato gold ores formed during the Miocene to Pliocene, as a result of cooling of the Marmato stock and reactivation along a crustal-scale fault zone related to thermal processes in an accretionary oceanic–continental plate orogen.  相似文献   
280.
Dense gas-particle jets similar to collapsing eruption columns were generated by large-scale experiments. The column collapse resulted in a ground-hugging current forming stratified layers with bedding similar to natural pyroclastic density current deposits. At the impact of the collapsing column on the ground, a thick, massive bed was formed due to a high sedimentation rate that dumped turbulence due to high clast concentration. Down-current, flow expansion favoured turbulence and dilute gas-particle current that formed thin rippled layers deposited under traction. Experiments fed with fine ash (median size 0·066 mm) formed deposits without tractional structures, because fine particles, as other sedimentary fine material, is cohesive and exposes a limited surface to the shear stress. Experimental outcomes show that massive beds are formed where the sedimentation rate per unit width Srw exceeds the bedload transportation rate Qb by two orders of magnitude. A lower ratio generates traction at the base of the flow and formation of shear structures that increase in wavelength and height with a decreasing flux. This study presents a diagram that provides a useful addition for facies analysis of pyroclastic density currents, provided that deposits representing sustained sedimentation can be identified in the field. In the diagram a decrease in the Srw/Qb ratio corresponds to an increase in bedform size. Application of the diagram for hazard assessment purposes allows the reconstruction of the mass eruption rate of the Agnano–Monte Spina eruption at Campi Flegrei, which is the main variable defining the intensity of past eruptions, and of the Bingham rheology of the massive underflow of the Mercato pyroclastic density current at Vesuvius.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号