首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145313篇
  免费   2179篇
  国内免费   1282篇
测绘学   3424篇
大气科学   9964篇
地球物理   28942篇
地质学   51877篇
海洋学   12984篇
天文学   32376篇
综合类   434篇
自然地理   8773篇
  2022年   855篇
  2021年   1503篇
  2020年   1672篇
  2019年   1799篇
  2018年   3769篇
  2017年   3516篇
  2016年   4304篇
  2015年   2442篇
  2014年   4178篇
  2013年   7628篇
  2012年   4521篇
  2011年   6052篇
  2010年   5319篇
  2009年   6885篇
  2008年   6186篇
  2007年   6140篇
  2006年   5651篇
  2005年   4361篇
  2004年   4284篇
  2003年   4087篇
  2002年   3892篇
  2001年   3536篇
  2000年   3376篇
  1999年   2761篇
  1998年   2845篇
  1997年   2626篇
  1996年   2271篇
  1995年   2260篇
  1994年   1951篇
  1993年   1816篇
  1992年   1707篇
  1991年   1667篇
  1990年   1758篇
  1989年   1515篇
  1988年   1388篇
  1987年   1664篇
  1986年   1430篇
  1985年   1790篇
  1984年   2017篇
  1983年   1935篇
  1982年   1793篇
  1981年   1633篇
  1980年   1509篇
  1979年   1431篇
  1978年   1420篇
  1977年   1236篇
  1976年   1209篇
  1975年   1183篇
  1974年   1161篇
  1973年   1185篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
871.
To begin exploring the underlying mechanisms that couple vegetation to cloud formation processes, we derive the lifting condensation level (LCL) to estimate cumulus cloud base height. Using a fully coupled land–ocean–atmosphere general circulation model (HadCM3LC), we investigate Amazonian forest feedbacks on cloud formation over three geological periods; modern-day (a.d. 1970–1990), the last glacial maximum (LGM; 21 kya), and under a future climate scenario (IS92a; a.d. 2070–2090). Results indicate that for both past and future climate scenarios, LCL is higher relative to modern-day. Statistical analyses indicate that the 800 m increase in LCL during the LGM is related primarily to the drier atmosphere promoted by lower tropical sea surface temperatures. In contrast, the predicted 1,000 m increase in LCL in the future scenario is the result of a large increase in surface temperature and reduced vegetation cover.  相似文献   
872.
Constitutive modeling of granular materials has been a subject of extensive research for many years. While the calculation of the Cauchy stress tensor using the discrete element method has been well established in the literature, the formulation and interpretation of the strain tensor are not as well documented. According to Bagi, 1 researchers mostly adopt well‐known continuum or discrete microstructural approaches to calculate strains within granular materials. However, neither of the 2 approaches can fully capture the behavior of granular materials. They are considered complementary to each other where each has its own strengths and limitations in solving granular‐mechanics problems. Zhang and Regueiro 2 proposed an equivalent continuum approach to calculating finite strain measures at the local level in granular materials subjected to large deformations. They used three‐dimensional discrete element method results to compare the proposed strains measures. This paper presents an experimental application of the Zhang and Regueiro 2 approach using three‐dimensional synchrotron microcomputed tomography images of a sheared Ottawa sand specimen. Invariant Eulerian finite strain measures were calculated for representative element volumes within the specimen. The spatial maps of Eulerian octahedral shear and volumetric strain were used to identify zones of intense shearing within the specimen and compared well with maps of incremental particle translation and rotation for the same specimen. The local Eulerian volumetric strain was compared to the global volumetric strains, which also can be considered as an averaging of all local Eulerian volumetric strains.  相似文献   
873.
Satellite remote sensing is a proven tool for mapping landuse patterns and estimating vegetation biomass/carbon. Present study aims at estimating the potential of forests of Radhanagari WLS (Western Ghats, India) to sequester the atmospheric carbon-di-oxide, using ground based observations coupled with satellite remote sensing. The study area was stratified for dominant forest types based on the structure and composition of vegetation and elevation variations. Permanent sample plots were laid down in these homogeneous vegetation strata (HVS) to make different observations during time 1 and time 2. Carbon sequestration by plantations was also studied and compared with natural forests. Species and area-specific biomass equations were used for estimating carbon pool and sequestration. Among natural forests ‘mixed moist deciduous’ forests exhibited highest sequestration rate (8%), whereas, plantation as obvious had a comparatively higher sequestration rate than natural forests (20.27%). Total carbon sequestration by forests of the Radhanagari WLS between 2004 and 2006 is 78742.09 tons. Eligible land for reforestation activity under clean development mechanism (CDM) of Kyoto Protocol was identified using satellite remote sensing using 1989 and 2005 datasets and it was observed that the potential land that can be used for reforestation activity is 10080 ha.  相似文献   
874.
A one-dimensional, time-dependent numerical cloud model is used to analyze the factors in the dynamic and thermodynamic equations which lead to a steady-state or nonsteady-state solution for the cloud vertical motion, buoyancy, precipitation, and cloud water fields. ‘Bulk water’ microphysical techniques are used for the cloud, rain, and hail variables. An atmospheric sounding from a severe storm situation is used as initial and environmental conditions, yielding model updrafts of 40 m sec?1 maximum and more than 10 m sec?1 over the entire cloud region. ‘Early conversion’ of the cloud water to rain leads to loading of lower portions of the updraft by rain, the formation of appreciable amounts of hail by freezing of the supercooled rain, and subsequent loading of the middle and upper portions of the updraft so that the updraft erodes throughout the cloud depth and the cloud dissipates, yielding a vigorous rain shower. A delay in the conversion of the cloud water to rain results in a steady-state solution, no rain or hail falling through the updraft. A two-dimensional cloud simulation of this same case shows rain and hail in the upper cloud regions recycled in the two-dimensional flow into the updraft near cloud base and a breakdown of the updraft with resultant rainout (negligible hail reaching the ground). The breakdown of the updraft has profound effects on the temperature field within the cloud, causing the lapse rate to deviate from the steady-state condition and approach the initial environmental conditions. The results emphasize the fact that the local change in temperature (and other dependent variables as well) is not independent of the vertical velocity, in general. This has implications for the interpretation of measurements made within clouds.  相似文献   
875.
The new model of the cometary head proposed in papers I and II is developed and applied to comet Burnham. It takes into account the likely existence of a halo of large icy particles surrounding the nucleus. These particles are steadily stripped from the nucleus by evaporating gases. Their terminal velocity and their rate of evaporation set the size of the halo. The existence of the icy halo influences in two ways the photometric characteristics of the coma. This paper establishes the photometric shape of the continuum as reflected by the icy grains, and compares it to the observed continuum of comet Burnham. Paper IV will compare the predictions of the model with the photometric profile of the molecular emission bands of C2, in the same comet.  相似文献   
876.
877.
The effects of source size on plume behaviour have been examined in a 1.2 m wind tunnel boundary layer for isokinetic sources with diameters from 3 to 35 mm at source heights of 230 mm and at ground level. Experimental measurements of mean concentration and the variance, intermittency and probability density functions of the concentration fluctuations were obtained. In addition, a fluctuating Gaussian plume model is presented which reproduces many of the observed features of the elevated emission. The mean plume width becomes independent of source size much more rapidly than the instantaneous plume width. Since it is the meandering of the instantaneous plume which generates most of the concentration fluctuations near the source, these are also dependent on source size. The flux of variance in the plume reaches a maximum, whose value is greatest for the smallest source size, close to the source and thereafter is monotonically decreasing. The intermittency factor reaches a minimum, whose value is lowest for the smallest source, and increases back towards one. Concentration fluctuations for the ground-level source are much less dependent on source size due to the effects of the surface.  相似文献   
878.
Complex flows in heterogeneous confined and unconfined aquifers is a phenomenon that continues to present difficulties in flow mapping and modelling in the field, laboratory, and through numerical simulations. It is often the case with complicated phenomena that transformative scaling and reduction of the problem through symmetry is of great efficacy in the formation of predictive models in both the laboratory and computational settings. A detailed a study of the application of a broad class of Lie scaling transformations on a set of equations representing the groundwater flows in heterogeneous confined and unconfined aquifers has produced a set of scaling relationships between the spatial variables, hydrologic variables, and parameters. The set of scaling transformations preserve the structure of the equations in the sense that the scaling transformations leave the initial‐boundary value system representing the invariant groundwater flows. This theoretical approach elucidates not only the scaling relationships but also the properties that hydrologic variables and parameters must satisfy in order for calling to be possible. Validation of the theory developed is carried out through a series of four numerical simulations using the USGS modflow ‐2005 software package. The results of these experiments demonstrate that the derived scaling transformations can effectively form predictive models of large‐scale phenomena at small scales with negligible error in many cases. Comments on the limitations of the approach and directions for future research are made in the closing sections. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
879.
The Son-Narmada-Tapti lineament and its surroundings of Central India (CI) is the second most important tectonic regime following the converging margin along Himalayas-Myanmar-Andaman of the Indian sub-continent, which attracted several geoscientists to assess its seismic hazard potential. Our study area, a part of CI, is bounded between latitudes 18°–26°N and longitudes 73°–83°E, representing a stable part of Peninsular India. Past damaging moderate magnitude earthquakes as well as continuing microseismicity in the area provided enough data for seismological study. Our estimates based on regional Gutenberg–Richter relationship showed lower b values (i.e., between 0.68 and 0.76) from the average for the study area. The Probabilistic Seismic Hazard Analysis carried out over the area with a radius of ~300 km encircling Bhopal yielded a conspicuous relationship between earthquake return period (T) and peak ground acceleration (PGA). Analyses of T and PGA shows that PGA value at bedrock varies from 0.08 to 0.15 g for 10 % (T = 475 years) and 2 % (T = 2,475 years) probabilities exceeding 50 years, respectively. We establish the empirical relationships $ {\text{ZPA}}_{(T = 475)} = 0.1146\;[V_{\text{s}} (30)]^{ - 0.2924}, $ and $ {\text{ZPA}}_{(T = 2475)} = 0.2053\;[V_{\text{s}} (30)]^{ - 0.2426} $ between zero period acceleration (ZPA) and shear wave velocity up to a depth of 30 m [V s (30)] for the two different return periods. These demonstrate that the ZPA values decrease with increasing shear wave velocity, suggesting a diagnostic indicator for designing the structures at a specific site of interest. The predictive designed response spectra generated at a site for periods up to 4.0 s at 10 and 2 % probability of exceedance of ground motion for 50 years can be used for designing duration dependent structures of variable vertical dimension. We infer that this concept of assimilating uniform hazard response spectra and predictive design at 10 and 2 % probability of exceedance in 50 years at 5 % damping at bedrocks of different categories may offer potential inputs for designing earthquake resistant structures of variable dimensions for the CI region under the National Earthquake Hazard Reduction Program for India.  相似文献   
880.
Izvestiya, Atmospheric and Oceanic Physics - The phase shift between changes in the global surface temperature Tg and atmospheric CO2 content $${{q}_{{{\text{C}}{{{\text{O}}}_{2}}}}}$$ has been...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号