首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49083篇
  免费   480篇
  国内免费   273篇
测绘学   1211篇
大气科学   3602篇
地球物理   8843篇
地质学   20409篇
海洋学   3594篇
天文学   9687篇
综合类   199篇
自然地理   2291篇
  2021年   161篇
  2020年   199篇
  2019年   214篇
  2018年   3563篇
  2017年   3341篇
  2016年   2206篇
  2015年   567篇
  2014年   637篇
  2013年   1226篇
  2012年   1856篇
  2011年   3773篇
  2010年   3459篇
  2009年   3838篇
  2008年   3048篇
  2007年   3743篇
  2006年   1025篇
  2005年   1318篇
  2004年   1211篇
  2003年   1248篇
  2002年   997篇
  2001年   717篇
  2000年   671篇
  1999年   576篇
  1998年   578篇
  1997年   577篇
  1996年   442篇
  1995年   422篇
  1994年   382篇
  1993年   336篇
  1992年   309篇
  1991年   273篇
  1990年   303篇
  1989年   281篇
  1988年   235篇
  1987年   310篇
  1986年   258篇
  1985年   346篇
  1984年   383篇
  1983年   371篇
  1982年   335篇
  1981年   323篇
  1980年   331篇
  1979年   282篇
  1978年   311篇
  1977年   263篇
  1976年   271篇
  1975年   275篇
  1974年   234篇
  1973年   238篇
  1972年   158篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
The Trypali carbonate unit (Upper Triassic), which crops out mainly in central‐western Crete, occurs between the parautochthonous series (Plattenkalk or Talea Ori‐Ida series, e.g. metamorphic Ionian series) and the Tripolis nappe (comprising the Tripolis carbonate series and including a basal Phyllite–Quartzite unit). It consists of interbedded dolomitic layers, represented principally by algally laminated peloidal mudstones, foraminiferal, peloidal and ooidal grainstones, as well as by fine‐grained detrital carbonate layers, in which coarse baroque dolomite crystals and dolomite nodules are dispersed. Baroque dolomite is present as pseudomorphs after evaporite crystals (nodules and rosettes), which grew penecontemporaneously by displacement and/or replacement of the host sediments (sabkha diagenesis). However, portions of the evaporites show evidence of resedimentation. Pre‐existing evaporites predominantly consisted of skeletal halite crystals that formed from fragmentation of pyramidal‐shaped hoppers, as well as of anhydrite nodules and rosettes (salt crusts). All microfacies are characteristic of peritidal depositional environments, such as sabkhas, tidal flats, shallow hypersaline lagoons, tidal bars and/or tidal channels. Along most horizons, the Trypali unit is strongly brecciated. These breccias are of solution‐collapse origin, forming after the removal of evaporite beds. Evaporite‐related diagenetic fabrics show that there was extensive dissolution and replacement of pre‐existing evaporites, which resulted in solution‐collapse of the carbonate beds. Evaporite replacement fabrics, including calcitized and silicified evaporite crystals, are present in cements in the carbonate breccias. Brecciation was a multistage process; it started in the Triassic, but was most active in the Tertiary, in association with uplift and ground‐water flow (telogenetic alteration). During late diagenesis, in zones of intense evaporite leaching and brecciation, solution‐collapse breccias were transformed to rauhwackes. The Trypali carbonate breccias (Trypali unit) are lithologically and texturally similar to the Triassic solution‐collapse breccias of the Ionian zone (continental Greece). The evaporites probably represent a major diapiric injection along the base of the parautochthonous series (metamorphic Ionian series) and also along the overthrust surface separating the parautochthonous series from the Tripolis nappe (Phyllite–Quartzite and Tripolis series). The injected evaporites were subsequently transformed into solution‐collapse breccias.  相似文献   
992.
We have used sandbox experiments to investigate and to illustrate the effects of topography upon the development of arcuate thrust belts. In experiments where a sand pack shortened and thickened in front of an advancing rectilinear piston, the geometry of the developing thrust wedge was highly sensitive to variations in surface topography. In the absence of erosion and sedimentation, the surface slope tended to become uniform, as predicted by the theory of critical taper. Under these conditions, the wedge propagated by sequential accretion of new thrust slices. In contrast, where erosion or sedimentation caused the topographic profile to become irregular, thrusts developed out of sequence. For example, erosion throughout a hinterland caused underlying thrusts to remain active and inhibited the development of new thrusts in the foreland. Where initial topography was irregular in plan view, accreting thrusts tended to be arcuate. They were convex towards the foreland, around an initially high area; concave towards the foreland, around an initially low area. Initial plateaux tended to behave rigidly, while arcuate thrust slices accreted to them. Thrust motions were radial with respect to each plateau. Within transfer zones to each side, fault blocks rotated about vertical axes and thrust motions were oblique-slip. At late stages of deformation, the surface slope of the thrust wedge tended towards a uniform value. Initial mountains of conical shape (representing volcanoes) also escaped deformation, except at depth, where they detached. Arcuate thrust slices accreted to front and back. Where a developing thrust wedge was subject to local incision, accreting thrust slices dipped towards surrounding areas of high topography, forming Vs across valleys.Arcuate structural patterns are to be found around the three highest plateaux on Earth (Tibet, Pamirs and Altiplano) and around the Tromen volcanic ridge in the Neuquén Basin of northern Patagonia. We infer that these areas behaved in quasi-rigid fashion, protected as they were by their high topography.  相似文献   
993.
994.
 Amphiboles were synthesized from bulk compositions prepared along the join Ca1.8Mg5.2Si8O22(OH)2–Ca1.8Mg3Ga4Si6O22(OH)2 hydrothermally at 750–850 °C and 1.0–1.8 GPa, and along the join Ca2Mg5Si8O22F2–Ca2Mg3Ga4Si6O22F2, anhydrously at 1000 °C and 0.7 GPa to document how closely the tschermak-type substitution is obeyed in these analogues of aluminous amphiboles. Electron-microprobe analyses and Rietveld X-ray diffraction structure refinements were performed to determine cation site occupancies. The extent of Ga substitution was found to be limited in both joins, but with the fluorine series having about twice the Ga content (0.6 atoms per formula unit, apfu) of the hydroxyl-series amphiboles (0.3 apfu). The tschermak-type substitution was followed very closely in the hydroxyl series with essentially equal partitioning of Ga between tetrahedral and octahedral sites. The fluorine-series amphiboles deviated significantly from the tschermak-type substitution and, instead, appeared to follow a substitution that is close to a Ca-pargasite substitution of the type: [6]Ga3++2[4]Ga3++1/2[A] Ca2+ = [6]Mg2++2[4]Si4++1/2[A]□. Infrared spectroscopy revealed an inverse correlation between the intensity of the OH-stretching bands and the Ga content for the hydroxyl- and fluorine-series amphiboles. The direct correlation between the Ga and F content and inverse relationship between the Ga and OH content may be a general phenomenon present in other minerals and suggests, for example, that high F contents in titanite are controlled by the Al content of the host rock and that there may be similar direct Al–F correlations in tschermakitic amphiboles. Evidence for the possibility that Al (Ga) might substitute onto only a subset of the tetrahedral sites in tschermakitic amphiboles was sought but not observed in this study. Received: 5 March 2001 / Accepted: 31 July 2001  相似文献   
995.
 We have investigated a well-ordered sample of natural Cr-bearing dickite from Nowa Ruda (Lower Silesia, Poland) using electron paramagnetic resonance (EPR) at X- and Q-band frequencies (9.42 and 33.97 GHz, respectively) and optical diffuse reflectance spectroscopy. The observation of the spin-forbidden transitions at 15500 and 14690 cm−1 allows us to unambiguously identify the major contribution of octahedrally coordinated Cr3+ ions in the optical spectrum. The X- and Q-band EPR spectra show two superposed Cr3+ signals. The corresponding fine-structure parameters were determined at room temperature and 145 K. These results suggest the substitution of Cr3+ for Al3+ in equal proportions in the two unequivalent octahedral sites of the dickite structure. In kaolin group minerals, the distortion around Cr3+ ions (λ≈ 0.2–0.4) in Al sites is significantly less rhombic than that observed around Fe3+ ions (λ≈ 0.6–0.8). Received: 29 June 2001 / Accepted: 22 October 2001  相似文献   
996.
A finite element formulation is proposed to approximate a nonlinear system of partial differential equations, composed by an elliptic subsystem for the pressure–velocity and a transport equation (convection–diffusion) for the concentration, which models the incompressible miscible displacement of one fluid by another in a rigid porous media. The pressure is approximated by the classical Galerkin method and the velocity is calculated by a post-processing technique. Then, the concentration is obtained by a Galerkin/least-squares space–time (GLS/ST) finite element method. A numerical analysis is developed for the concentration approximation. Then, stability, convergence and numerical results are presented confirming the a priori error estimates.  相似文献   
997.
 The heat capacity of paranatrolite and tetranatrolite with a disordered distribution of Al and Si atoms has been measured in the temperature range of 6–309 K using the adiabatic calorimetry technique. The composition of the samples is represented with the formula (Na1.90K0.22Ca0.06)[Al2.24Si2.76O10nH2O, where n=3.10 for paranatrolite and n=2.31 for tetranatrolite. For both zeolites, thermodynamic functions (vibrational entropy, enthalpy, and free energy function) have been calculated. At T=298.15 K, the values of the heat capacity and entropy are 425.1 ± 0.8 and 419.1 ±0.8 J K−1 mol−1 for paranatrolite and 381.0 ± 0.7 and 383.2 ± 0.7 J K−1 mol−1 for tetranatrolite. Thermodynamic functions for tetranatrolite and paranatrolite with compositions corrected for the amount of extraframework cations and water molecules have also been calculated. The calculation for tetranatrolite with two water molecules and two extraframework cations per formula yields: C p (298.15)=359.1 J K−1 mol−1, S(298.15) −S(0)=362.8 J K−1 mol−1. Comparing these values with the literature data for the (Al,Si)-ordered natrolite, we can conclude that the order in tetrahedral atoms does not affect the heat capacity. The analysis of derivatives dC/dT for natrolite, paranatrolite, and tetranatrolite has indicated that the water- cations subsystem within the highly hydrated zeolite may become unstable at temperatures above 200 K. Received: 30 July 2001 / Accepted: 15 November 2001  相似文献   
998.
 This paper presents an improved generalisation of cation distribution determination based on an accurate fit of all crystal-chemical parameters. Cations are assigned to the tetrahedral and octahedral sites of the structure according to their scattering power and a set of bond distances optimised for spinel structure. A database of 295 spinels was prepared from the literature and unpublished data. Selected compositions include the following cations: Mg2+, Al3+, Si4+, Ti4+, V3+, Cr3+, Mn2+, Mn3+, Fe2+, Fe3+, Co2+, Ni2+, Zn2+ and vacancies. Bond distance optimisation reveals a definite lengthening in tetrahedral distance when large amounts of Fe3+ or Ni2+ are present in the octahedral site. This means that these cations modify the octahedral angle and hence the shared octahedral edge, causing an increase in the tetrahedral distance with respect to the size of the cations entering it. Some applications to published data are discussed, showing the capacity and limitations of the method for calculating cation distribution, and for identifying inconsistencies and inaccuracies in experimental data. Received: 19 February 2001 / Accepted: 1 June 2001  相似文献   
999.
A Swedish table of blast damage depths has, in one form or other, been in use since the late-1970s. Its history and the underlying theory are described. New experimental and theoretical findings that point out a number of shortcomings in the table and the underlying theory are presented and discussed. A revised version of the blast damage table was recently introduced in conjunction with new but incomplete recommendations for cautious perimeter blasting. The new table leaves the difficult task of taking into account factory like decoupling, water in the borehole, the rock properties, type of initiation, charge length and the actual bit diameter to the user. This paper discusses different ways of doing this, based on the experimental findings and a recent formula for the prediction of the lengths of radial cracks behind the half-casts. The material presented in this paper is meant to supplement and extend the new Swedish recommendations for cautious perimeter blasting of tunnels, shafts, pits and road cuts.  相似文献   
1000.
We have experimentally studied the formation of diamonds in alkaline carbonate–carbon and carbonate–fluid–carbon systems at 5.7–7.0 GPa and 1150–1700 °C, using a split-sphere multi-anvil apparatus (BARS). The starting carbonate and fluid-generating materials were placed into Pt and Au ampoules. The main specific feature of the studied systems is a long period of induction, which precedes the nucleation and growth of diamonds. The period of induction considerably increases with decreasing P and T, but decreases when adding a C–O–H fluid to the system. In the range of P and T corresponding to the formation of diamonds in nature, this period lasts for tens of hours. The reactivity of the studied systems with respect to the diamond nucleation and growth decreases in this sequence: Na2CO3–H2C2O4·2H2O–C>K2CO3–H2C2O4·2H2O–C>>Na2CO3–C>K2CO3–C. The diamond morphology is independent of P and T, and is mainly governed by the composition of the crystallization medium. The stable growth form is a cubo-octahedron in the Na2CO3 melt, and an octahedron in the K2CO3 melt. Regardless of the composition of the carbonate melt, only octahedral diamond crystals formed in the presence of the C–O–H fluid. The growth rates of diamond varied in the range from 1.7 μm/h at 1420 °C to 0.1–0.01 μm/h at 1150 °C, and were used to estimate, for the first time, the possible duration of the crystallization of natural diamonds. From the analysis of the experimental results and the petrological evidence for the formation of diamonds in nature, we suggest that fluid-bearing alkaline carbonate melts are, most likely, the medium for the nucleation and growth of diamonds in the Earth's upper mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号