首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
  国内免费   2篇
大气科学   1篇
地球物理   6篇
地质学   15篇
海洋学   3篇
天文学   6篇
综合类   3篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   4篇
  1993年   1篇
  1981年   1篇
排序方式: 共有34条查询结果,搜索用时 109 毫秒
31.
Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ~1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ~375°C–590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic.  相似文献   
32.
The morphotectonic setting of the East Pacific Rise (EPR) between21°12 and 22°40 S and its recent and past hydrothermalactivity were the focus of the Russian R/V Geolog Fersmans expeditionin 1987–1988.The EPR axial zone in the study area is comprised of three segmentsseparated by overlapping spreading centers (OSCs) near 21°44 and22°08 S. The northern segment is the shallowest of three and hasa distinct massive axial ridge, trapeziodal in cross-section, toppedby a very wide flat summit surface and cut by a well-developedcentral graben. These features testify to intense magmatism and to avoluminous crustal magmatic chamber underlying the whole segment.Fine-scale segmentation is most clearly revealed in the structure ofthe central graben within which several 4th-order segments can bedistinguished. This scale of segmentation is also reflected on flanks of theaxis by variations in the character and intensity of faulting.According to structural and petrologic data, the magmatism is mostintense in the central part of the segment which is probably locateddirectly over a magmatic diapir supplying the melt to the whole segment.Magma migration at the subcrustal level from the center towards the ends ofthe segment with discrete injection into the crustal magmatic chamber ispresumed.The central segment is broken into two morphologically distinct partsseparated by a deval. In the subsided northern part, the wide summit of theaxial ridge is cut by a well-developed, intensely fractured axialgraben. In the southern part, the axial ridge is relatively elevated, butnarrow with an ephemeral graben along its crest. The character and intensityof faulting on the axial flanks are also considerably different in thenorthern and southern parts of the segment. Thus, the magmatic supply tothese two parts is thought to originate from two different sources. If so,then at present the magma chamber underlying the southern part of thesegment is probably at the stage of replenishment, while in the north it isat the stage of deep cooling.The southern segment is structurally similar to the central one. Howeverthere is considerably less intensive magmatic activity in this region,especially south of 22°30 S where the axial ridge is narrow, andtriangular in cross-section.Both OSCs studied are marked by abrupt narrowing and sharp subsidence ofthe tips of axial ridges within the northern limbs. The southern OSC limbsare morphologically similar to normal sections of axial ridges. In bothcases the flanks are structurally and morphologically disrupted adjacent tothe OSCs and oblique structures can be traced far southward of the OSCflanks. Due to the spatial position of oblique structures on the the flanksit is presumed that the OSC near 22°07 S is migrating northward.The 21°44 S OSC zone has apparently undergone small spatialoscillations. In spite of the small amplitude of lateral displacement, thiszone is marked by prominent bathymetric anomalies.Numerous massive sulfide deposits were discovered atop the axial ridgealong the entire length of the uplifted and hydrothermally active northernsegment. Ore metal concentrations in near-bottom waters are maximumover the southern part of the northern segment, while maximum concentrationsof the same metals in surficial sediments are confined to the central partof the same segment. We surmise that there has been a recentalong-axis shift of the zone of maximum hydrothermal activity fromthe middle of the segment to its present position in the southern part ofthe segment. Considering sedimentation rates, the age of this shift can beapproximately estimated to be 5 to 10 thousand years before the present.The relatively Mg-enriched basalts of the middle part of thenorthern segment represent a tike of a more primitive pattern, while therelatively Fe-rich rocks of its southern part probably reflect alarge degree of fractionation at shallow crustal levels. Considering thistrend, in addition to morphotectonic data we presume that subaxial magmaflow from the middle to the southern part of the segment is responsible forthe along-axis shift of hydrothermal activity.In the central segment of the study area, massive sulfides have only beendiscovered south of the 21°55 S deval, where the axial ridgeshoals and where the existence of a subjacent magma chamber is presumed.The very weak manifestations of recent volcanism within the southernsegment explain the absence of hydrothermal activity and sulfide depositswithin this segment.  相似文献   
33.
This work reports new hydrochemical data on the two types of cold high p CO2 groundwaters from the Mukhen deposit (Khabarovsk district). The first type is classed with HCO3-Ca-Mg waters with a relatively low TDS (up to 1.7 g/l) and high concentrations of Fe2+, Mn2+, Ba2+, and SiO2. The second type is of HCO3-Na composition with high TDS (up to 14 g/l) and elevated Li+, B, Sr2+, Br?, and I?. New oxygen (δ18O) and hydrogen (δD) isotopic data on the waters and carbon (δ13C) isotopic data on the gas phase, together with a detailed geological and hydrogeological analysis of the study area, allowed us to decipher the origin of both the mineral waters. Based on the tritium content (3H) in the ground and surface waters of the area, the duration of the mineral water circulation was estimated. It was established that the both types of groundwaters were formed during interaction of meteoric water with bedrock under active influence of CO2, however HCO3-Na groundwaters have longer residence time than HCO3-Ca-Mg groundwaters.  相似文献   
34.
Synthetic and natural uranium oxides UO x (2≦×≦3) have been studied with X-ray photoelectron spectroscopy (XPS) to determine the phase composition and content of uranium ions in uraninites with a varying degree of oxidation. A strong hybridization of U6p and O2s orbitals has been found which permits a quantitative assessment of the U-O bond lengths. The values of such bonds in some substances have been found to be smaller than those in synthetic U(VI) oxide. The oxides U2O5 and U3O8 contain two types of uranium ions with a varying degree of oxidation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号