首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  国内免费   1篇
地球物理   5篇
地质学   13篇
海洋学   2篇
天文学   8篇
自然地理   6篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   2篇
  2011年   4篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1992年   1篇
  1990年   2篇
  1971年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
31.
32.
33.
Plume–lithosphere interactions (PLI) have important consequences both for tectonic and mineralogical evolution of the lithosphere: for example, Archean metallogenic crises at the boundaries of the West African and Australian cratons coincide with postulated plume events. In continents, PLI are often located near boundaries between younger plates (e.g., orogenic) and older stable plates (e.g., cratons), which represent important geometrical, thermal and rheological barriers that interact with the emplacement of the plume head (e.g., Archean West Africa, East Africa, Pannonian–Carpathian system). The observable PLI signatures are conditioned by plume dynamics but also by lithosphere rheology and structure. We address the latter problem by considering a free-surface numerical model of PLI with two stratified elasto-viscous–plastic (EVP) lithospheric plates, one of which is older and thicker than another. The results show that: (1) plume head flattening is asymmetric, it is blocked from one side by the cold vertical boundary of the older plate, which leads to the mechanical decoupling of the crust from the mantle lithosphere, and to localized faulting at the cratonic margin; (2) the return flow from the plume head results in sub-vertical down-thrusting (delamination) of the lithosphere at the margin, producing sharp vertical cold boundary down to the 400 km depth; (3) plume head flattening and migration towards the younger plate results in concurrent surface extension above the centre of the plume and in compression (pushing), down-thrusting and magmatic events at the cratonic margin (down-thrusting is also produced at the opposite border of the younger plate); these processes may result in continental growth at the “craton side”; (4) topographic signatures of PLI show basin-scale uplifts and subsidences preferentially located at cratonic margins. Negative Rayleigh–Taylor instabilities in the lithosphere above the plume head provide a mechanism for crustal delamination. Inferred consequences of PLI near intra-continental plate boundaries, such as faulting at cratonic edges and enhanced magmatic activity, could explain plume-related metallogenic crises, as suggested for West Africa and Australia.  相似文献   
34.
This study focuses on spatial motion of the lunar elevator which is studied in the framework of elliptical restricted three-body problem. Analysis of dynamics of a spacecraft anchored to the Moon by a tether is done assuming that the tether’s length can be changed according to a prescribed law. The goal is to find the control laws that allow one to compensate for the eccentricity of the orbits, i.e., to maintain the pendulum at a fixed angle with respect to the Earth–Moon direction. The results have shown that the fixed orientation of the tether can be kept for several configurations of the system; some of these configurations are found to be stable. The obtained results can be applied to study the properties and possible configurations of the lunar elevator, as well as applications for small planets and asteroids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号