首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   10篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   37篇
地质学   37篇
海洋学   5篇
天文学   17篇
自然地理   12篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   5篇
  2010年   3篇
  2009年   5篇
  2008年   10篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2003年   7篇
  2002年   8篇
  2001年   1篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有112条查询结果,搜索用时 0 毫秒
81.
The knowledge of fundamental frequency and damping ratio of structures is of uppermost importance in earthquake engineering, especially to estimate the seismic demand. However, elastic and plastic frequency drops and damping variations make their estimation complex. This study quantifies and models the relative frequency drop affecting low‐rise modern masonry buildings and discusses the damping variations based on two experimental data sets: Pseudo‐dynamic tests at ELSA laboratory in the frame of the ESECMaSE project and in situ forced vibration tests by EMPA and EPFL. The relative structural frequency drop is shown to depend mainly on shaking amplitude, whereas the damping ratio variations could not be explained by the shaking amplitude only. Therefore, the absolute frequency value depends mostly on the frequency at low amplitude level, the amplitude of shaking and the construction material. The decrease in shape does not vary significantly with increasing damage. Hence, this study makes a link between structural dynamic properties, either under ambient vibrations or under strong motions, for low‐rise modern masonry buildings. A value of 2/3 of the ambient vibration frequency is found to be relevant for the earthquake engineering assessment for this building type. However, the effect of soil–structure interaction that is shown to also affect these parameters has to be taken into account. Therefore, an analytical methodology is proposed to derive first the fixed‐base frequency before using these results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
82.
The reliability of a Pseudodynamic (PsD) test depends primarily on the accuracy of the control system. Difficulties arise mainly when the method is applied to very stiff or very heavy structures or to structures with a high number of Degrees of Freedom (DoFs). This paper describes the bi-directional PsD testing of a full-size three-storey building. The tested specimen is a composite structure with plan dimensions of 12×16 m and height of 9·5 m, made of steel columns and beams combined with composite reinforced concrete slabs. The PsD test included the application of two uncorrelated accelerograms along the horizontal directions X and Y. Since the structure was not symmetric about the Y-axis, the possibility of torsion was considered by taking into account both horizontal displacements and the yaw rotation at every floor. Three displacement-controlled hydraulic actuators were thus used at each floor to impose these three DoFs while a fourth actuator with special control strategy was added to optimize the distribution of loads among the pistons. The validity of the testing methodology was verified by performing also a dynamic random burst test on the specimen which was afterwards pseudodynamically reproduced. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
83.
Bacteriophages have been used in soil column studies for the last several decades as surrogates to study the fate and transport behavior of enteric viruses in groundwater. However, recent studies have shown that the transport behavior of bacteriophages and enteric viruses in porous media can be very different. The next generation of virus transport science must therefore provide more data on mobility of enteric viruses and the relationship between transport behaviors of enteric viruses and bacteriophages. To achieve this new paradigm, labor intensity devoted to enteric virus quantification method must be reduced. Recent studies applied quantitative polymerase chain reaction (qPCR) to column filtration experiments to study the transport behavior of human adenovirus (HAdV) in porous media under a variety of conditions. A similar approach can be used to study the transport of other enteric viruses such as norovirus. Analyzing the column samples with both qPCR and culture assays and applying multiplex qPCR to study cotransport behavior of more than one virus will provide information to under‐explored areas in virus transport science. Both nucleic acid extraction kits and one‐step lysis protocols have been used in these column studies to extract viral nucleic acid for qPCR quantification. The pros and cons of both methods are compared herein and solutions for overcoming problems are suggested. As better understanding of the transport behavior of enteric viruses is clearly needed, we strongly advocate for application of rapid molecular tools in future studies as well as optimization of protocols to overcome their current limitations.  相似文献   
84.
This study assesses the seismic performance of a hybrid coupled wall (HCW) system with replaceable steel coupling beams (RSCBs) at four intensities of ground motion shaking. The performance of the HCW system is benchmarked against the traditional reinforced concrete coupled wall (RCW). Nonlinear numerical models are developed in OpenSees for a representative wall elevation in a prototype 11‐story building designed per modern Chinese codes. Performance is assessed via nonlinear dynamic analysis. The results indicate that both systems can adequately meet code defined objectives in terms of global and component behavior. Behavior of the two systems is consistent under service level earthquakes, whereas under more extreme events, the HCW system illustrates enhanced performance over the RCW system resulting in peak interstory drifts up to 31% lower in the HCW than the RCW. Larger drifts in the RCW are because of reduced coupling action induced by stiffness degradation of RC coupling beams, whereas the stable hysteretic responses and overstrength of RSCBs benefit post‐yield behavior of the HCW. Under extreme events, the maximum beam rotations of the RSCBs are up to 42% smaller than those of the RC coupling beams. Moderate to severe damage is expected in the RC coupling beams, whereas the RSCBs sustain damage to the slab above the beam and possible web buckling of shear links. The assessment illustrates the benefits of the HCW with RSCBs over the RCW system, because of easy replacement of the shear links as opposed to costly and time‐consuming repairs of RC coupling beams. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
85.
High‐resolution snow depth (SD) maps (1 × 1 m) obtained from terrestrial laser scanner measurements in a small catchment (0.55 km2) in the Pyrenees were used to assess small‐scale variability of the snowpack at the catchment and sub‐grid scales. The coefficients of variation are compared for various plot resolutions (5 × 5, 25 × 25, 49 × 49, and 99 × 99 m) and eight different days in two snow seasons (2011–2012 and 2012–2013). We also studied the relation between snow variability at the small scale and SD, topographic variables, small‐scale variability in topographic variables. The results showed that there was marked variability in SD, and it increased with increasing scales. Days of seasonal maximum snow accumulation showed the least small‐scale variability, but this increased sharply with the onset of melting. The coefficient of variation (CV) in snowpack depth showed statistically significant consistency amongst the various spatial resolutions studied, although it declined progressively with increasing difference between the grid sizes being compared. SD best explained the spatial distribution of sub‐grid variability. Topographic variables including slope, wind sheltering, sub‐grid variability in elevation, and potential incoming solar radiation were also significantly correlated with the CV of the snowpack, with the greatest correlation occurring at the 99 × 99 m resolution. At this resolution, stepwise multiple regression models explained more than 70% of the variance, whereas at the 25 × 25 m resolution they explained slightly more than 50%. The results highlight the importance of considering small‐scale variability of the SD for comprehensively representing the distribution of snowpack from available punctual information, and the potential for using SD and other predictors to design optimized surveys for acquiring distributed SD data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
86.
A seismic shaking‐table test performed on a one‐storey steel frame with an 8 ton RC floor slab was reproduced on a similar specimen by means of the pseudo‐dynamic (PsD) method. A satisfactory agreement of the results could only be achieved after recalibration of the theoretical mass in the PsD equation and proper inclusion in the PsD test input of the horizontal and pitching accelerations measured on the table. In the shaking‐table test, the spurious pitching motion produced a significant increase in the apparent damping that could be estimated as a function of the pitching dynamic flexibility of the system. Dynamic and PsD snap‐back tests were also performed to provide an additional check of the reliability of the PsD method. The spurious pitching motion of the shaking table should always be measured during the tests and reported as a mean to increase the reliability and usefulness of the results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
87.
We determine seismic strain rate of tectonic earthquakes along the Central America Volcanic Arc. We then compare this result to those obtained from earthquakes related to the convergence of the Cocos and Caribbean plates and to earthquakes in the back-arc region of northern Central America.

The seismic strain-rate tensor for shallow-focus earthquakes along the Central America volcanic arc since 1700, has a compressive eigenvector with a magnitude of 0.7 × 10−8 year−1, and oriented in a 357° azimuth. The extensive eigenvector is oriented in a 86° azimuth, with a magnitude of 0.82 × 10−8 year−1. When only Centroid Moment-tensor solutions (CMT) are considered, the respective eigenvectors are 1.2 × 10−8 year−1 and 1.0 × 10−8 year−1.

The compressive eigenvector from the seismic strain-rate tensor for earthquakes along the Cocos-Caribbean convergent margin is 2.0 × 10−8 year−1, plunging at 25°, and oriented in a 29° azimuth. Its magnitude and direction are similar to those of the compressive eigenvector for earthquakes along the volcanic arc. The extensive eigenvector along the convergent margin, on the other hand, has a large vertical component. The compressive and extensive eigevenvectors are 4.9 × 10−8 year−1 and 4.6 × 10−8 year−1, using only CMTs as the database.

Earthquakes along the grabens of northern Central America yield a seismic strain-rate tensor whose extensive eigenvector has a magnitude of 2.4 × 10−8 year−1, oriented in a 109° azimuth. Magnitude and direction are similar to those of the extensive eigenvector for earthquakes along the volcanic arc. The compressive eigenvector along the grabens is practically vertical.

Similarities in magnitudes and directions for compressive and extensive eigenvectors suggest to us that the strain field along the Central America volcanic arc is the result of compression along the convergent Cocos-Caribbean margin, and extension in the back-arc region, along the grabens of northern Central America. This field is resolved as strike-slip faulting along the arc.  相似文献   

88.
Southwest British Columbia has the potential to experience large‐magnitude earthquakes generated by the Cascadia Subduction Zone (CSZ). Buildings in Metro Vancouver are particularly vulnerable to these earthquakes because the region lies above the Georgia sedimentary basin, which can amplify the intensity of ground motions, particularly at medium‐to‐long periods. Earthquake design provisions in Canada neglect basin amplification and the consequences of accounting for these effects are uncertain. By leveraging a suite of physics‐based simulations of M9 CSZ earthquakes, we develop site‐specific and period‐dependent spectral acceleration basin amplification factors throughout Metro Vancouver. The M9 simulations, which explicitly account for basin amplification for periods greater than 1s, are benchmarked against the 2016 BC Hydro ground motion model (GMM), which neglects such effects. Outside the basin, empirical and simulated seismic hazard estimates are consistent. However, for sites within the basin and periods in the 1‐5 s range, GMMs significantly underestimate the hazard. The proposed basin amplification factors vary as a function of basin depth, reaching a geometric mean value as high as 4.5 at a 2‐s period, with respect to a reference site located just outside the basin. We evaluate the impact of the M9 simulations on tall reinforced concrete shear wall buildings, which are predominant in the region, by developing a suite of idealized structural systems that capture the strength and ductility intended by historical seismic design provisions in Canada. Ductility demands and collapse risk conditioned on the occurrence of the M9 simulations were found to exceed those associated with ground motion shaking intensities corresponding to the 975 and 2475‐year return periods, far exceeding the ~500‐year return period of M9 CSZ earthquakes.  相似文献   
89.
Bayesian networks (BNs) have become a standard in the field of Artificial Intelligence as a means of dealing with uncertainty and risk modelling. In recent years, there has been particular interest in the simultaneous use of continuous and discrete domains, obviating the need for discretization, using so-called hybrid BNs. In these hybrid environments, Mixtures of Truncated Exponentials (MTEs) provide a suitable solution for working without any restriction. The objective of this study is the assessment of groundwater quality through the design and application of a probabilistic clustering, based on hybrid Bayesian networks with MTEs. Firstly, the results obtained allows the differentiation of three groups of sampling points, indicating three different classes of groundwater quality. Secondly, the probability that a sampling point belongs to each cluster allows the uncertainty in the clusters to be assessed, as well as the risks associated in terms of water quality management. The methodology developed could be applied to other fields in environmental sciences.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号