首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   76篇
  国内免费   2篇
测绘学   14篇
大气科学   47篇
地球物理   235篇
地质学   293篇
海洋学   51篇
天文学   77篇
综合类   5篇
自然地理   27篇
  2023年   1篇
  2022年   11篇
  2021年   25篇
  2020年   22篇
  2019年   11篇
  2018年   46篇
  2017年   53篇
  2016年   75篇
  2015年   53篇
  2014年   38篇
  2013年   50篇
  2012年   26篇
  2011年   42篇
  2010年   38篇
  2009年   48篇
  2008年   27篇
  2007年   15篇
  2006年   17篇
  2005年   19篇
  2004年   13篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   9篇
  1999年   8篇
  1998年   11篇
  1997年   1篇
  1996年   6篇
  1995年   5篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1957年   1篇
  1952年   2篇
  1950年   3篇
排序方式: 共有749条查询结果,搜索用时 62 毫秒
581.
The 2015 Illapel earthquake produced self‐evacuation of tall buildings in the city of Buenos Aires, Argentina, located 1280 km away from the epicenter. The ground motions in Buenos Aires due to the main event (Mw 8.3) and its aftershocks were registered by a new seismometer. The data collected allowed to estimate the maximum story drift ratios and top floor accelerations for tall buildings in Buenos Aires. The similarities between the response spectra and the Fourier amplitude spectra for the mainshock and its aftershocks show the influence that the dynamic properties of the 300‐m soil deposit have on the large acceleration amplification produced in these groups of buildings.  相似文献   
582.
Soil erosion hinders the recovery and development of ecosystems in semiarid regions. Rainstorms, coupled with the absence of vegetation and improper land management, are important causes of soil erosion in such areas. Greater effort should be made to quantify the initial erosion processes and try to find better solutions for soil and water conservation. In this research, 54 rainfall simulations were performed to assess the impacts of vegetation patterns on soil erosion in a semiarid area of the Loess Plateau, China. Three rainfall intensities (15 mm h‐1, 30 mm h‐1 and 60 mm h‐1) and six vegetation patterns (arbors‐shrubs‐grass ‐A‐S‐G‐, arbors‐grass‐shrubs ‐A‐G‐S‐, shrubs‐arbors‐grass ‐S‐A‐G‐, shrubs‐grass‐arbors ‐S‐G‐A‐, grass‐shrubs‐arbors ‐G‐S‐A‐ and grass‐arbors‐shrubs ‐G‐A‐S‐) were examined at different slope positions (summits, backslopes and footslopes) in the plots (33.3%, 33.3%, 33.3%), respectively. Results showed that the response of soil erosion to rainfall intensity differed under different vegetation patterns. On average, increasing rainfall intensity by 2 to 4 times induced increases of 3.1 to 12.5 times in total runoff and 6.9 to 46.4 times in total sediment yield, respectively. Moreover, if total biomass was held constant across the slope, the patterns of A‐G‐S and A‐S‐G (planting arbor at the summit position) had the highest runoff (18.34 L m‐2 h‐1) and soil losses (197.98 g m‐2 h‐1), while S‐A‐G had the lowest runoff (5.51 L m‐2 h‐1) and soil loss (21.77 g m‐2 h‐1). As indicated by redundancy analysis (RDA) and Pearson correlation results, a greater volume of vegetation located on the back‐ and footslopes acted as effective buffers to prevent runoff generation and sediment yield. Our findings indicated that adjusting vegetation position along slopes can be a crucial tool to control water erosion and benefit ecosystem restoration on the Loess Plateau and other similar regions of the world. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
583.
The surface roughness of agricultural soils is mainly related to the type of tillage performed, typically consisting of oriented and random components. Traditionally, soil surface roughness (SSR) characterization has been difficult due to its high spatial variability and the sensitivity of roughness parameters to the characteristics of the instruments, including its measurement scale. Recent advances in surveying have greatly improved the spatial resolution, extent, and availability of surface elevation datasets. However, it is still unknown how new roughness measurements relates with the conventional roughness measurements such as 2D profiles acquired by laser profilometers. The objective of this study was to evaluate the suitability of Terrestrial Laser Scanner (TLS) and Structure from Motion (SfM) photogrammetry techniques for quantifying SSR over different agricultural soils. With this aim, an experiment was carried out in three plots (5 × 5 m) representing different roughness conditions, where TLS and SfM photogrammetry measurements were co-registered with 2D profiles obtained using a laser profilometer. Differences between new and conventional roughness measurement techniques were evaluated visually and quantitatively using regression analysis and comparing the values of six different roughness parameters. TLS and SfM photogrammetry measurements were further compared by evaluating multi-directional roughness parameters and analyzing corresponding Digital Elevation Models. The results obtained demonstrate the ability of both TLS and SfM photogrammetry techniques to measure 3D SSR over agricultural soils. However, profiles obtained with both techniques (especially SfM photogrammetry) showed a loss of high-frequency elevation information that affected the values of some parameters (e.g. initial slope of the autocorrelation function, peak frequency and tortuosity). Nevertheless, both TLS and SfM photogrammetry provide a massive amount of 3D information that enables a detailed analysis of surface roughness, which is relevant for multiple applications, such as those focused in hydrological and soil erosion processes and microwave scattering. © 2019 John Wiley & Sons, Ltd.  相似文献   
584.
Pollution caused by pesticides is becoming relevant because of their harmful environmental effects. The persistence, bioaccumulation and toxicity of some organochloride pesticides have resulted in their restricted use since 1970 and a requirement to monitor them in many countries. Pesticides have endocrine, immunological, reproductive and carcinogenic effects in both humans and animals. The facilitated infiltration of substances results in the pollution of hydric underground resources in karstic limestone such as that found in the state of Yucatan. Observing the north occidental region of the state of Yucatan is particularly important as it is characterized by agricultural activities (wide use of pesticides), significant human settlements and underground water flows oriented towards the north coast. In this study, the underground water quality of a karstic aquifer was evaluated by quantifying the presence of organochlorine pesticides in 29 wells located throughout the Mérida‐Progreso transect, Yucatan, Mexico. The presence of DDT, lindane and their metabolites was detected at concentrations above the permissible limits stated by Mexican regulatory standards (NOM‐127‐SSA1‐1994 2010) in the majority of wells studied. Continuous monitoring of the underground hydric resources in this region is therefore essential to raising awareness of pollution risks and the vulnerability of the coastal north to the contamination of the underground water flows.  相似文献   
585.
This study investigates the recovery capabilities of a single-barred beach in the Pacific Mexican coast before and after the 2015–2016 El Niño winter. Concurrent hydrodynamic and morphological data collected over a 3-year period (August 2014–2017) were analysed to determine the subaerial-subtidal volumetric exchange and cross-shore subtidal sandbar migrations, in relation to the incident wave forcing. The beach presented a seasonal seaward and landward sandbar migration cycle. The sandbar migrated offshore during the energetic waves between November and February, and onshore during the milder wave period in spring, until welding to the subaerial beach around May. The transfer of sediment towards the subaerial section continued over the summer, reaching a complete recovery by September/October. Prior to El Niño, the subaerial beach successfully recovered by the end of summer 2015 through the landward sandbar migration process. The 2015–2016 energetic winter waves caused a subaerial volume loss of ~ 140 m3 m?1 (from October 2015 to March 2016), more than twice the amount eroded in the other winters, and the sandbar moved further offshore and to deeper depths (3–4 m) than the winter before. In addition, the energetic 2015–2016 winter waves lasted for 2 months longer than in other years, making the 2016 spring shorter. Consequently, during the onshore migration, the sandbar was unable of reaching shallow depths, and a large portion of sand remained in the subtidal beach. The subaerial beach recovered 60 and 65% of the loss in the 2016 and 2017 summers, respectively. It is concluded that the landward migration process of the sandbar during the spring is critical to ensure a full subaerial beach recovery over the mild wave period in summer. The recovery capabilities of the subaerial beach will depend on the cross-shore distance and depth where the sandbar is located, and on the duration of mild wave conditions required for the sandbar to migrate onshore.  相似文献   
586.
Anthropogenic global warming might cause expansion of the drylands and trigger socio-economic challenges in the water-deficit subtropical regions. Changes in hydroclimate during the intervals of variable global temperature over the recent geological past, however, could provide useful information about the possible responses of these arid ecosystems to the near future warmer conditions. We evaluated hydroclimates of two different parts of subtropical North America by generating new records of surface processes and regional vegetation from drought-prone northeast Mexico and subsequently compared them with the paleoclimate of the central-southern United States. Our study suggests that congruent changes occurred in both parts during ~13.5–9.5 cal ka BP, an interval with no warm pool in the northern Gulf of Mexico. The precipitation and erosion responded to temperature-modulated variations in positions of the Inter-Tropical Convergence Zone (ITCZ). Conditions were wetter than today in the subsequent warmer interval (~9.5–8.2 cal ka BP) with generally stable ITCZ and the highest summer insolation. Hydroclimate changes of both parts lacked congruency during ~8.2–6.8 cal ka BP as the northern Gulf of Mexico began hosting a warm pool. Similar to the modern conditions, this warm pool might have modified trajectories of the tropical storms. Erosion and abundance of C3 plants decreased in northeast Mexico. Higher wetness in the Mississippi River Basin and the southern Great Plains during this interval suggested that the storms made landfall more frequently in the central-southern United States. © 2019 John Wiley & Sons, Ltd.  相似文献   
587.
We assessed inter-annual changes in fish assemblages of a tropical bay which experienced a heavily industrialized process in the last decades. A highly significant difference in community structure among the bay zones, and a decrease in fish richness and abundance over time were found. Changes in fish richness and abundance between the two first (1987–1988 and 1993–1995) and the two latter time periods (1998–2001 and 2012–2013) were sharpest in the inner bay zone, the most impacted bay area, and in the middle zone, whereas the outer zone remained comparatively stable over time. These changes coincided with increased metal pollution (mainly, Zn and Cd) in the bay and with the enlargement of the Sepetiba Port. Spatial changes in the fish community structure among the bay zones were related to differences in salinity, transparency and depth with this latter variable acting as a buffer stabilizing temporal community changes.  相似文献   
588.
This paper presents a high-resolution operational forecast system for providing support to oil spill response in Belfast Lough. The system comprises an operational oceanographic module coupled to an oil spill forecast module that is integrated in a user-friendly web application. The oceanographic module is based on Delft3D model which uses daily boundary conditions and meteorological forcing obtained from COPERNICUS and from the UK Meteorological Office. Downscaled currents and meteorological forecasts are used to provide short-term oil spill fate and trajectory predictions at local scales. Both components of the system are calibrated and validated with observational data, including ADCP data, sea level, temperature and salinity measurements and drifting buoys released in the study area. The transport model is calibrated using a novel methodology to obtain the model coefficients that optimize the numerical simulations. The results obtained show the good performance of the system and its capability for oil spill forecast.  相似文献   
589.
This work illustrates the practicality of investigating sinkholes integrating data gathered by ground penetrating radar (GPR), electrical resistivity imaging (ERI) and trenching or direct logging of the subsidence‐affected sediments in combination with retrodeformation analysis. This mutidisciplinary approach has been tested in a large paleosinkhole developed during the deposition of a Quaternary terrace on salt‐bearing evaporites. The subsidence structure, exposed in an artificial excavation, is located next to Puilatos, a village that was abandoned in the 1970s due to severe subsidence damage. Detailed logging of the exposure revealed that the subsidence structure corresponds to an asymmetric sagging and collapse paleosinkhole with no clear evidence of recent activity. The sedimentological and structural relationships together with the retrodeformation analysis indicate that synsedimentary subsidence controlled channel location, the development of a palustrine environment and local changes in the channel pattern. GPR profiles were acquired using an array of systems with different antenna frequencies, including some recently developed shielded antennas with improved vertical resolution and penetration depth. Although radargrams imaged the faulted sagging structure and provided valuable data on fault throw, they did not satisfactorily image the complex architecture of the fluvial deposit. ERI showed lower resolution but higher penetration depth when compared to GPR, roughly capturing the subsidence structure and yielding information on the thickness of the high‐resistivity alluvium and the nature of the underlying low‐resistivity karstic residue developed on top of the halite‐bearing evaporitic bedrock. Data comparison allows the assessment of the advantages and limitations of these complementary techniques, highly useful for site‐specific sinkhole risk management. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
590.
The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter (P) that controls the probability of spatial distribution of initial loads. Also, we use a “conservation” parameter (π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range (0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号