首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   76篇
  国内免费   2篇
测绘学   14篇
大气科学   47篇
地球物理   235篇
地质学   293篇
海洋学   51篇
天文学   77篇
综合类   5篇
自然地理   27篇
  2023年   1篇
  2022年   11篇
  2021年   25篇
  2020年   22篇
  2019年   11篇
  2018年   46篇
  2017年   53篇
  2016年   75篇
  2015年   53篇
  2014年   38篇
  2013年   50篇
  2012年   26篇
  2011年   42篇
  2010年   38篇
  2009年   48篇
  2008年   27篇
  2007年   15篇
  2006年   17篇
  2005年   19篇
  2004年   13篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   9篇
  1999年   8篇
  1998年   11篇
  1997年   1篇
  1996年   6篇
  1995年   5篇
  1994年   8篇
  1993年   7篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1957年   1篇
  1952年   2篇
  1950年   3篇
排序方式: 共有749条查询结果,搜索用时 140 毫秒
121.
122.
The accuracies of three different evolutionary artificial neural network (ANN) approaches, ANN with genetic algorithm (ANN-GA), ANN with particle swarm optimization (ANN-PSO) and ANN with imperialist competitive algorithm (ANN-ICA), were compared in estimating groundwater levels (GWL) based on precipitation, evaporation and previous GWL data. The input combinations determined using auto-, partial auto- and cross-correlation analyses and tried for each model are: (i) GWL t?1 and GWL t?2; (ii) GWL t?1, GWL t?2 and P t ; (iii) GWL t?1, GWL t?2 and E t ; (iv) GWL t?1, GWL t?2, P t and E t ; (v) GWL t?1, GWL t?2 and P t?1 where GWL t , P t and E t indicate the GWL, precipitation and evaporation at time t, individually. The optimal ANN-GA, ANN-PSO and ANN-ICA models were obtained by trying various control parameters. The best accuracies of the ANN-GA, ANN-PSO and ANN-ICA models were obtained from input combination (i). The mean square error accuracies of the ANN-GA and ANN-ICA models were increased by 165 and 124% using ANN-PSO model. The results indicated that the ANN-PSO model performed better than the other models in modeling monthly groundwater levels.  相似文献   
123.
An inclinometer is a high-precision instrument used to detect displacement along sliding zones. From the time the inclinometer pipe is embedded to inclinometer calibration and to measured data collection and processing, many errors or misjudgments can occur that affect the measurement data. The most important objective for correctly using the observation results is the accurate interpretation of the horizontal displacement profiles obtained from the observation. This study combines existing inclusive data accumulated by a monitoring system on a test sloping site in a campus. It focuses on a comprehensive interpretation of the displacement relationships among different monitoring instruments. This study uses data interpretation principles, categorizes different mechanisms, and performs quantitative analysis and discussion in order to determine the significance presented by various types of monitored information in terms of slope sliding. In addition, in this study, stairwells in a campus building are used, an inclinometer is set up, and calibration equipment for the experiment is added in order to simulate various configurations and observe patterns for displacement curves. The examples for the various conditions include empty holes in the backfill around the pipe, connection points falling off, pipe torsion, relative sliding between layers reaching an extreme condition and leading to stuck pipes, multi-layered sliding, and different thicknesses in sliding zones. The experiment illustrates changes in behavior in terms of environmental factors. The results can be used for instrument calibration and measurement, and as a reference for disaster warning and prevention in hazardous areas with slopes.  相似文献   
124.
This study demonstrated the usefulness of very long-range terrestrial laser scanning (TLS) for analysis of the spatial distribution of a snowpack, to distances up to 3000 m, one of the longest measurement range reported to date. Snow depth data were collected using a terrestrial laser scanner during 11 periods of snow accumulation and melting, over three snow seasons on a Pyrenean hillslope characterized by a large elevational gradient, steep slopes, and avalanche occurrence. The maximum and mean absolute snow depth error found was 0.5-0.6 and 0.2-0.3 m respectively, which may result problematic for areas with a shallow snowpack, but it is sufficiently accurate to determine snow distribution patterns in areas characterized by a thick snowpack. The results indicated that in most cases there was temporal consistency in the spatial distribution of the snowpack, even in different years. The spatial patterns were particularly similar amongst the surveys conducted during the period dominated by snow accumulation (generally until end of April), or amongst those conducted during the period dominated by melting processes (generally after mid of April or early May). Simple linear correlation analyses for the 11 survey dates, and the application of Random Forests analysis to two days representative of snow accumulation and melting periods indicated the importance of topography to the snow distribution. The results also highlight that elevation and the Topographic Position index (TPI) were the main variables explaining the snow distribution, especially during periods dominated by melting. The intra- and inter-annual spatial consistency of the snowpack distribution suggests that the geomorphological processes linked to presence/absence of snow cover act in a similar way in the long term, and that these spatial patterns can be easily identified through several years of adequate monitoring.  相似文献   
125.
Suitable vineyard soils enhance soil stability and biodiversity which in turn protects roots against erosion and nutrient losses. There is a lack of information related to inexpensive and suitable methods and tools to protect the soil in Mediterranean sloping vineyards(25° of slope inclination). In the vineyards of the Montes de Málaga(southern Spain), a sustainable land management practice that controls soil erosion is actually achieved by tilling rills in the down-slope direction to canalize water and sediments. Because of their design and use, we call them agri-spillways. In this research, we assessed two agri-spillways(between 10 m and 15 m length, and slopes between 25.8° and 35°) by performing runoff experiments under extreme conditions(a motor driven pump that discharged water flows up to 1.33 l s~(-1) for 12 to 15 minutes: ≈1000 l). The final results showed: i) a great capacity by these rills to canalize large amounts of water and sediments; and, ii) higher water flow speeds(between 0.16 m s-1 and 0.28 m s~(-1)) and sediment concentrationrates(up to 1538.6 g l~(-1)) than typically found in other Mediterranean areas and land uses(such as badlands, rangelands or extensive crops of olives and almonds). The speed of water flow and the sediment concentration were much higher in the shorter and steeper rill. We concluded that agri-spillways, given correct planning and maintenance, can be a potential solution as an inexpensive method to protect the soil in sloping Mediterranean vineyards.  相似文献   
126.
Cerro Pinto is a Pleistocene rhyolite tuff ring-dome complex located in the eastern Trans-Mexican Volcanic Belt. The complex is composed of four tuff rings and four domes that were emplaced in three eruptive stages marked by changes in vent location and eruptive character. During Stage I, vent clearing produced a 1.5-km-diameter tuff ring that was then followed by emplacement of two domes of approximately 0.2 km3 each. With no apparent hiatus in activity, Stage II began with the explosive formation of a tuff ring ~2 km in diameter adjacent to and north of the earlier ring. Subsequent Stage II eruptions produced two smaller tuff rings within the northern tuff ring as well as a small dome that was mostly destroyed by explosions during its growth. Stage III involved the emplacement of a 0.04 km3 dome within the southern tuff ring. Cerro Pinto’s eruptive history includes sequences that follow simple rhyolite-dome models, in which a pyroclastic phase is followed immediately by effusive dome emplacement. Some aspects of the eruption, however, such as the explosive reactivation of the system and explosive dome destruction, are more complex. These events are commonly associated with polygenetic structures, such as stratovolcanoes or calderas, in which multiple pulses of magma initiate reactivation. A comparison of major and trace element geochemistry with nearby Pleistocene silicic centers does not show indication of any co-genetic relationship, suggesting that Cerro Pinto was produced by a small, isolated magma chamber. The compositional variation of the erupted material at Cerro Pinto is minimal, suggesting that there were not multiple pulses of magma responsible for the complex behavior of the volcano and that the volcanic system was formed in a short time period. The variety of eruptive style observed at Cerro Pinto reflects the influence of quickly exhaustible water sources on a short-lived eruption. The rising magma encountered small amounts of groundwater that initiated eruption phases. Once a critical magma:water ratio was exceeded, the eruptions became dry and sub-plinian to plinian. The primary characteristic of Cerro Pinto is the predominance of fall deposits, suggesting that the level at which rising magma encountered water was deep enough to allow substantial fragmentation after the water source was exhausted. Isolated rhyolite domes are rare and are not currently viewed as prominent volcanic hazards, but the evolution of Cerro Pinto demonstrates that individual domes may have complex cycles, and such complexity must be taken into account when making hazard risk assessments.  相似文献   
127.
128.
Dam removal has been demonstrated to be one of the most frequent and effective fluvial restoration actions but at most dam removals, especially of small dams, there has been little geomorphological monitoring. The results of the geomorphological monitoring implemented in two dams in the rivers Urumea and Leitzaran (northern Spain) are presented. The one from the River Urumea, originally 3.5 m high and impounding 500 m of river course, was removed instantaneously whereas that in the River Leitzaran, 12.5 m high, and impounding 1500 m of river course, is in its second phase of a four‐stage removal process. Changes in channel morphology, sediment size and mobility and river bed morphologies were assessed. The monitoring included several different techniques: topographical measurements of the channel, terrestrial laser scanner measurements of river bed and bars, sediment grain size and transport; all of them repeated in four (May, August, November 2011 and May 2012) and five (July and September 2013, April and August 2014 and June 2015) fieldwork campaigns in the River Urumea and River Leitzaran, respectively. Geomorphic responses of both dam removals are presented, and compared. Morphological channel adjustments occurred mainly shortly after dam removals, but with differences among the one removed instantaneously, that was immediate, whereas that conducted by stages took longer. Degradational processes were observed upstream of both dams (up to 1.2 m and 4 m in the River Urumea and River Leitzaran, respectively), but also aggradational processes (pool filling), upstream of Inturia Dam (2.85 m at least). Less evident aggradational processes were observed downstream of the dams (up to 0.37 m and 0.50 m in the River Urumea and River Leitzaran, respectively). Flood events, especially a 100 year flood registered during the monitoring period of Mendaraz Dam removal, reactivated geomorphological processes as incision and bank erosion, whereas longitudinal profile recovery, grain‐size sorting and upstream erosion took longer. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
129.
130.
Species of the macroalgae Caulerpa sp. are increasingly being observed in meadows of the endemic Mediterranean seagrass Posidonia oceanica, and in particular Caulerpa taxifolia, has been considered as an invasive species leading to seagrass decline. Studies have so far failed to reveal the underlying mechanisms of the success of the macroalgae, and here, we examine how biogeochemical changes of the environment associated to indigenous (Caulerpa prolifera) and non-indigenous (Caulerpa racemosa and C. taxifolia) species affect the habitat of P. oceanica. Two of the species (C. prolifera and C. racemosa) affect the sediment biogeochemical conditions by increasing organic matter pools, microbial activity, and sulfide pools of the sediments, and limited effects were found for C. taxifolia. Biomass of the macroalgae contributed to the extent of impacts, and high sulfide invasion into the seagrasses and regression of the meadow were pronounced at the location with the highest Caulerpa biomass. This suggests that Caulerpa invasion contributes to seagrass decline probably because Caulerpa thrives better than the seagrasses in the modified environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号