首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2595篇
  免费   67篇
  国内免费   14篇
测绘学   66篇
大气科学   208篇
地球物理   485篇
地质学   746篇
海洋学   280篇
天文学   654篇
综合类   1篇
自然地理   236篇
  2021年   16篇
  2020年   24篇
  2019年   32篇
  2018年   43篇
  2017年   29篇
  2016年   55篇
  2015年   42篇
  2014年   51篇
  2013年   140篇
  2012年   63篇
  2011年   106篇
  2010年   72篇
  2009年   131篇
  2008年   93篇
  2007年   104篇
  2006年   89篇
  2005年   79篇
  2004年   74篇
  2003年   71篇
  2002年   75篇
  2001年   63篇
  2000年   75篇
  1999年   60篇
  1998年   65篇
  1997年   40篇
  1996年   39篇
  1995年   41篇
  1994年   43篇
  1993年   33篇
  1992年   32篇
  1991年   35篇
  1990年   30篇
  1989年   34篇
  1988年   24篇
  1987年   40篇
  1986年   30篇
  1985年   48篇
  1984年   52篇
  1983年   51篇
  1982年   48篇
  1981年   46篇
  1980年   45篇
  1979年   31篇
  1978年   29篇
  1977年   39篇
  1976年   28篇
  1975年   34篇
  1974年   14篇
  1973年   20篇
  1972年   18篇
排序方式: 共有2676条查询结果,搜索用时 15 毫秒
61.
We present a set of four Gemini-North Multi-Object Spectrograph/integral field unit (IFU) observations of the central disturbed regions of the dwarf irregular starburst galaxy NGC 1569, surrounding the well-known superstar clusters A and B. This continues on directly from a companion paper, in which we describe the data reduction and analysis techniques employed and present the analysis of one of the IFU pointings. By decomposing the emission-line profiles across the IFU fields, we map out the properties of each individual component identified and identify a number of relationships and correlations that allow us to investigate in detail the state of the ionized interstellar medium (ISM). Our observations support and expand on the main findings from the analysis of the first IFU position, where we conclude that a broad (≲400 km s−1) component underlying the bright nebular emission lines is produced in a turbulent mixing layer on the surface of cool gas knots, set up by the impact of the fast-flowing cluster winds. We discuss the kinematic, electron-density and excitation maps of each region in detail and compare our results to previous studies. Our analysis reveals a very complex environment with many overlapping and superimposed components, including dissolving gas knots, rapidly expanding shocked shells and embedded ionizing sources, but no evidence for organized bulk motions. We conclude that the four IFU positions presented here lie well within the starburst region where energy is injected, and, from the lack of substantial ordered gas flows, within the quasi-hydrostatic zone of the wind interior to the sonic point. The net outflow occurs at radii beyond 100–200 pc, but our data imply that mass-loading of the hot ISM is active even at the roots of the wind.  相似文献   
62.
The atmosphere of Mars does little to attenuate incoming ultraviolet (UV) radiation. Large amounts of UV radiation sterilize the hardiest of terrestrial organisms within minutes, and chemically alter the soil such that organic molecules at or near the surface are rapidly destroyed. Thus the survival of any putative martian life near the surface depends to a large extent on how much UV radiation it receives. Variations in small-scale geometry of the surface such as pits, trenches, flat faces and overhangs can have a significant effect on the incident UV flux and may create “safe havens” for organisms and organic molecules. In order to examine this effect, a 1-D radiative transfer sky model with 836 meshed points (plus the Sun) was developed which includes both diffuse and direct components of the surface irradiance. This model derives the variation of UV flux with latitude and an object's Geometric Shielding Ratio (a ratio which describes the geometry of each situation). The best protection is offered by overhangs with flux reduced to a factor of 1.8±0.2×10−5 of the unprotected value, a reduction which does not vary significantly by latitude. Pits and cracks are less effective with a reduction in UV flux of only up to 4.5±0.5×10−3 for the modeled scenarios; however, they are more effective for the same geometric shielding ratio than overhangs at high latitudes due to the low height of the Sun in the sky. Lastly, polar faces of rocks have the least effective shielding geometry with at most a 1.1±0.1×10−1 reduction in UV flux. Polar faces of rocks are most effective at mid latitudes where the Sun is never directly overhead, as at tropical latitudes, and never exposes the back of the rock, as at polar latitudes. In the most favorable cases, UV flux is sufficiently reduced such that organic in-fall could accumulate beneath overhanging surfaces and in pits and cracks. As well, hardy terrestrial microorganisms such as Bacillus pumilus could persist for up to 100 sols on the outer surfaces of typical spacecraft or several tens of martian years in the most shielded surface niches.  相似文献   
63.
The Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft has produced an extensive atmospheric data set, beginning during aerobraking and continuing throughout the extended scientific mapping phase. Temperature profiles for the atmosphere below about 40 km, surface temperatures and total dust and water ice opacities, can be retrieved from infrared spectra in nadir viewing mode. This paper describes assimilation of nadir retrievals from the spacecraft aerobraking period, LS=190°–260°, northern hemisphere autumn to winter, into a Mars general circulation model. The assimilation scheme is able to combine information from temperature and dust optical depth retrievals, making use of a model forecast containing information from the assimilation of earlier observations, to obtain a global, time-dependent analysis. Given sufficient temperature retrievals, the assimilation procedure indicates errors in the a priori dust distribution assumptions even when lacking dust observations; in this case there are relatively cold regions above the poles compared to a model which assumes a horizontally-uniform dust distribution. One major reason for using assimilation techniques is in order to investigate the transient wave behavior on Mars. Whilst the data from the 2-h spacecraft mapping orbit phase is much more suitable for assimilation, even the longer (45–24 h) period aerobraking orbit data contain useful information about the three-dimensional synoptic-scale martian circulation which the assimilation procedure can reconstruct in a consistent way. Assimilations from the period of the Noachis regional dust storm demonstrate that the combined assimilation of temperature and dust retrievals has a beneficial impact on the atmospheric analysis.  相似文献   
64.
Oxygen and carbon isotope ratios in the martian CO2 are key values to study evolution of volatiles on Mars. The major problems in spectroscopic determinations of these ratios on Mars are uncertainties associated with: (1) equivalent widths of the observed absorption lines, (2) line strengths in spectroscopic databases, and (3) thermal structure of the martian atmosphere during the observation. We have made special efforts to reduce all these uncertainties. We observed Mars using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope. While the oxygen and carbon isotope ratios on Mars were byproducts in the previous observations, our observation was specifically aimed at these isotope ratios. We covered a range of 6022 to 6308 cm−1 with the highest resolving power of ν/δν=3.5×105 and a signal-to-noise ratio of 180 in the middle of the spectrum. The chosen spectral range involves 475 lines of the main isotope, 184 lines of 13CO2, 181 lines of CO18O, and 119 lines of CO17O. (Lines with strengths exceeding 10−27 cm at 218 K are considered here.) Due to the high spectral resolution, most of the lines are not blended. Uncertainties of retrieved isotope abundances are in inverse proportion to resolving power, signal-to-noise ratio, and square root of the number of lines. Laboratory studies of the CO2 isotope spectra in the range of our observation achieved an accuracy of 1% in the line strengths. Detailed observations of temperature profiles using MGS/TES and data on temperature variations with local time from two GCMs are used to simulate each absorption line at various heights in each part of the instrument field of view and then sum up the results. Thermal radiation of Mars' surface and atmosphere is negligible in the chosen spectral range, and this reduces errors associated with uncertainties in the thermal structure on Mars. Using a combination of all these factors, the highest accuracy has been achieved in measuring the CO2 isotope ratios: 13C/12C = 0.978 ± 0.020 and 18O/16O = 1.018 ± 0.018 times the terrestrial standards. Heavy isotopes in the atmosphere are enriched by nonthermal escape and sputtering, and depleted by fractionation with solid-phase reservoirs. The retrieved ratios show that isotope fractionation between CO2 and oxygen and carbon reservoirs in the solid phase is almost balanced by nonthermal escape and sputtering of O and C from Mars.  相似文献   
65.
Abstract— We have measured the titanium isotopic compositions of 23 silicon carbide grains from the Orgueil (CI) carbonaceous chondrites for which isotopic compositions of silicon, carbon, and nitrogen and aluminum‐magnesium systematics had been measured previously. Using the 16 most‐precise measurements, we estimate the relative contributions of stellar nucleosynthesis during the asymptotic giant branch (AGB) phase and the initial compositions of the parent stars to the compositions of the grains. To do this, we compare our data to the results of several published stellar models that employ different values for some important parameters. Our analysis confirms that s‐process synthesis during the AGB phase only slightly modified the titanium compositions in the envelopes of the stars where mainstream silicon carbide grains formed, as it did for silicon. Our analysis suggests that the parent stars of the >1 μm silicon carbide grains that we measured were generally somewhat more massive than the Sun (2–3 M) and had metallicities similar to or slightly higher than solar. Here we differ slightly from results of previous studies, which indicated masses at the lower end of the range 1.5–3 M and metallicities near solar. We also conclude that models using a standard 13C pocket, which produces a good match for the main component of s‐process elements in the solar system, overestimate the contribution of the 13C pocket to s‐process nucleosynthesis of titanium found in silicon carbide grains. Although previous studies have suggested that the solar system has a significantly different titanium isotopic composition than the parent stars of silicon carbide grains, we find no compelling evidence that the Sun falls off of the array defined by those stars. We also conclude that the Sun does lie on the low‐metallicity end of the silicon and titanium arrays defined by mainstream silicon carbide grains.  相似文献   
66.
The three-dimensional (3D) modeling of coronal loops and filaments requires algorithms that automatically trace curvilinear features in solar EUV or soft X-ray images. We compare five existing algorithms that have been developed and customized to trace curvilinear features in solar images: i) the oriented-connectivity method (OCM), which is an extension of the Strous pixel-labeling algorithm (developed by Lee, Newman, and Gary); ii) the dynamic aperture-based loop-segmentation method (developed by Lee, Newman, and Gary); iii) unbiased detection of curvilinear structures (developed by Steger, Raghupathy, and Smith); iv) the oriented-direction method (developed by Aschwanden); and v) ridge detection by automated scaling (developed by Inhester). We test the five existing numerical codes with a TRACE image that shows a bipolar active region and contains over 100 discernable loops. We evaluate the performance of the five codes by comparing the cumulative distribution of loop lengths, the median and maximum loop length, the completeness or detection efficiency, the accuracy, and flux sensitivity. These algorithms are useful for the reconstruction of the 3D geometry of coronal loops from stereoscopic observations with the STEREO spacecraft, or for quantitative comparisons of observed EUV loop geometries with (nonlinear force-free) magnetic field extrapolation models.  相似文献   
67.
The design of detector systems for flight applications requires the consideration of a number of issues unique to space instrumentation. Flight detectors must endure hostile radiation environments and thermal extremes. Paramount importance is given to reliability since inflight replacement is at best difficult and usually impossible. Flight detectors are also significant cost and design drivers since they often determine key requirements for flight instruments such as volume, mass, power consumption, heat dissipation and communications budgets. In this paper we describe the primary concerns in developing flight detector systems, and review the challenges posed by future NASA and ESA space science missions for detector development.  相似文献   
68.
Simultaneous spectroscopic and photometric observations of the Z Cam type dwarf nova SY Cancri were used to obtain absolute flux calibrations. A comparison of the photometric calibration with a wide-slit spectrophotometric calibration showed that either method is equally satisfactory. A radial velocity study of the secondary star, made using the far-red Na  i doublet, yielded a semi-amplitude of   K 2= 127 ± 23 km s−1  . Taking the published value of  86 ± 9 km s−1  for K 1 gives a mass ratio of   q = M 2/ M 1= 0.68 ± 0.14  ; this is very different from the value of  1.13 ± 0.35  quoted in the literature. Using the new lower mass ratio, and constraining the mass of the white dwarf to be within reasonable limits, then leads to a mass for the secondary star that is substantially less than would be expected for its orbital period if it satisfied a main-sequence mass–radius relationship. We find a spectral type of M0 that is consistent with that expected for a main-sequence star of the low mass we have found. However, in order to fill its Roche lobe, the secondary must be significantly larger than a main-sequence star of that mass and spectral type. The secondary is definitely not a normal main-sequence star.  相似文献   
69.
In recently developed laser-driven shockless compression experiments an ablatively driven shock in a primary target is transformed into a ramp compression wave in a secondary target via unloading followed by stagnation across an intermediate vacuum gap. Current limitations on the achievable peak longitudinal stresses are limited by the ability of shaping the temporal profile of the ramp compression pulse. We report on new techniques using graded density reservoirs for shaping the loading profile and extending these techniques to high peak pressures.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号