首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   8篇
  国内免费   7篇
测绘学   4篇
大气科学   9篇
地球物理   16篇
地质学   91篇
海洋学   7篇
天文学   14篇
综合类   1篇
自然地理   26篇
  2024年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   11篇
  2015年   7篇
  2014年   13篇
  2013年   6篇
  2012年   7篇
  2011年   8篇
  2010年   8篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   9篇
  2005年   10篇
  2004年   4篇
  2003年   7篇
  2002年   7篇
  2001年   7篇
  2000年   1篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1962年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
21.
Using data from glacial geomorphology, tephra–soil stratigraphy and mineralogy, palynology, and radiocarbon dating, a sequence of glacial and bioclimatic stades and interstades has been identified for the last ca. 50000 yr in the Ruiz-Tolima massif, Cordillera Central, Colombia. Six Pleistocene cold stades separated by warmer interstades occurred: before 48000, between 48000 and 33000, between 28000 and 21000, from ≥16000 to ca. 14000, ca. 13000–12400, and ca. 11000–10000 yr BP. Although these radiocarbon ages are minimum-limiting ages obtained from tephra layers on top of tills, the tills are not significantly older because most are bracketed by dated tephra sets in measured stratigraphic sections. Two minor moraine stages likely reflect glacier standstill during cold intervals ca. 7400 yr BP and slightly earlier. Finally, glaciers readvanced between the seventeenth and nineteenth centuries. In contrast to the ice-clad volcanoes of the massif, ca. 34 km2 in area above an altitude of ca. 4800 m, the ice cover expanded to 1200 km2 during the Last Glacial Maximum (LGM) and was still 800 km2 during Late-glacial time (LGT). Glacier reconstructions based on the moraines suggest depression of the equilibrium line altitude (ELA) by ca. 1100 m during the LGM and 500–600 m during LGT relative to the modern ELA, which lies at ca. 5100 m in the Cordillera Central. Glaciers in this region apparently reached their greatest extent when the climate was cold and wet, e.g. during stades corresponding to Oxygen Isotope Stage 3; glaciers were still expanding during the LGM ca. 28000–21000 yr BP, but they shrank considerably after 21000 yr BP because of greatly reduced precipitation. © 1997 John Wiley & Sons, Ltd.  相似文献   
22.
Regional climate model (RCM) outputs are often used in hydrological modeling, in particular for streamflow forecasting. The heterogeneity of the meteorological variables such as precipitation, temperature, wind speed and solar radiation often limits the ability of the hydrological model performance. This paper assessed the sensitivity of RCM outputs from the PRUDENCE project and their performance in reproducing the streamflow. The soil and water assessment tool was used to simulate the streamflow of the Rhone River watershed located in the southwestern part of Switzerland, with the climate variables obtained from four RCMs. We analyzed the difference in magnitude of precipitation, maximum and minimum air temperature, and wind speed with respect to the observed values from the meteorological stations. In addition, we also focused on the impact of the grid resolution on model performance, by analyzing grids with resolutions of 50 × 50 and 25 × 25 km2. The variability of the meteorological inputs from various RCMs is quite severe in the studied watershed. Among the four different RCMs, the Danish Meteorological Institute provided the best performance when simulating runoff. We found that temperature lapse rate is significantly important in the mountainous snow and glacier dominated watershed as compared to other variables like precipitation, and wind speed for hydrological performance. Therefore, emphasis should be given to minimum and maximum temperature in the bias correction studies for downscaling climatic data for impact modeling in the mountainous snow and glacier dominated complex watersheds.  相似文献   
23.
The paper presents the concept, the objectives, the approach used, and the expected performances and accuracies of a radioscience experiment based on a radio link between the Earth and the surface of Mars. This experiment involves radioscience equipment installed on a lander at the surface of Mars. The experiment with the generic name lander radioscience (LaRa) consists of an X-band transponder that has been designed to obtain, over at least one Martian year, two-way Doppler measurements from the radio link between the ExoMars lander and the Earth (ExoMars is an ESA mission to Mars due to launch in 2013). These Doppler measurements will be used to obtain Mars’ orientation in space and rotation (precession and nutations, and length-of-day variations). More specifically, the relative position of the lander on the surface of Mars with respect to the Earth ground stations allows reconstructing Mars’ time varying orientation and rotation in space.Precession will be determined with an accuracy better by a factor of 4 (better than the 0.1% level) with respect to the present-day accuracy after only a few months at the Martian surface. This precession determination will, in turn, improve the determination of the moment of inertia of the whole planet (mantle plus core) and the radius of the core: for a specific interior composition or even for a range of possible compositions, the core radius is expected to be determined with a precision decreasing to a few tens of kilometers.A fairly precise measurement of variations in the orientation of Mars’ spin axis will enable, in addition to the determination of the moment of inertia of the core, an even better determination of the size of the core via the core resonance in the nutation amplitudes. When the core is liquid, the free core nutation (FCN) resonance induces a change in the nutation amplitudes, with respect to their values for a solid planet, at the percent level in the large semi-annual prograde nutation amplitude and even more (a few percent, a few tens of percent or more, depending on the FCN period) for the retrograde ter-annual nutation amplitude. The resonance amplification depends on the size, moment of inertia, and flattening of the core. For a large core, the amplification can be very large, ensuring the detection of the FCN, and determination of the core moment of inertia.The measurement of variations in Mars’ rotation also determines variations of the angular momentum due to seasonal mass transfer between the atmosphere and ice caps. Observations even for a short period of 180 days at the surface of Mars will decrease the uncertainty by a factor of two with respect to the present knowledge of these quantities (at the 10% level).The ultimate objectives of the proposed experiment are to obtain information on Mars’ interior and on the sublimation/condensation of CO2 in Mars’ atmosphere. Improved knowledge of the interior will help us to better understand the formation and evolution of Mars. Improved knowledge of the CO2 sublimation/condensation cycle will enable better understanding of the circulation and dynamics of Mars’ atmosphere.  相似文献   
24.
The integration of seismic data with core data should provide ground-truth to a structural interpretation of seismic data. The main difficulty in such an integration effort is the correct translation of physical property measurements on cores to a form which can be used in seismostratigraphic interpretation. In the absence of down-hole well data and check-shots, required knowledge of the velocity structure at the drilling locations can be obtained directly from measurements of the physical properties of core samples. This involves upscaling of the data from physical properties of cores to the sample interval used in the seismic data. In the present study, three of the seven drill-sites of ODP (Ocean Drilling Program) Leg 177 in 1997/1998, located on the Agulhas Ridge in the south-eastern Atlantic (sites 1088–1090), were connected with eight seismic profiles. Physical properties data measured on the cores from the various holes at each site were combined to create a single continuous log and used to construct synthetic seismograms. The synthetics generally show a good agreement with real seismic data in terms of amplitude and waveform. Some reflections in these generated traces may have a time-shift due to sections with incomplete or spurious P-wave velocity measurements in the ODP datasets. The main reflectors identified in the real seismic data correspond to hiatuses or periods of reduced sedimentation rates, and correlate well with density variations. One particular hiatus, clearly observable in the real seismic data, was not unequivocally identifiable in the various types of core data, and tying core data to seismic data can confirm its existence in the core data, showing the benefit of including seismic data in an interpretation of core log data. On the other hand, core data provide a calibration tool for the geological timescale of seismic data and information about the lithology, needed in the interpretation of seismic data.  相似文献   
25.
26.
We investigate the effect of dust on the scaling properties of galaxy clusters based on hydrodynamic N -body simulations of structure formation. We have simulated five dust models plus radiative cooling and adiabatic models using the same initial conditions for all runs. The numerical implementation of dust was based on the analytical computations of Montier & Giard. We set up dust simulations to cover different combinations of dust parameters that make evident the effects of size and abundance of dust grains. Comparing our radiative plus dust cooling runs with a purely radiative cooling simulation, we find that dust has an impact on cluster scaling relations. It mainly affects the normalization of the scalings (and their evolution), whereas it introduces no significant differences in their slopes. The strength of the effect critically depends on the dust abundance and grain size parameters as well as on the cluster scaling. Indeed, cooling due to dust is effective in the cluster regime and has a stronger effect on the 'baryon driven' statistical properties of clusters such as   L X– M , Y – M , S – M   scaling relations. Major differences, relative to the radiative cooling model, are as high as 25 per cent for the   L X– M   normalization, and about 10 per cent for the Y – M and S – M normalizations at redshift zero. On the other hand, we find that dust has almost no impact on the 'dark matter driven'   T mw– M   scaling relation. The effects are found to be dependent in equal parts on both dust abundances and grain size distributions for the scalings investigated in this paper. Higher dust abundances and smaller grain sizes cause larger departures from the radiative cooling (i.e. with no dust) model.  相似文献   
27.
28.
ABSTRACT. Beekeeping has the potential to supplement incomes in rural southern Africa. In light of regional economic constraints, self-reliance strategies that draw on local knowledge and skills take on a renewed importance. We consider the advantages and disadvantages of beekeeping and examine appropriate forms of development support. A short case study from Zimbabwe illustrates these issues.  相似文献   
29.
Mapping and laboratory analysis of the sediment—landform associations in the proglacial area of polythermal Storglaciären, Tarfala, northern Sweden, reveal six distinct lithofacies. Sandy gravel, silty gravel, massive sand and silty sand are interpreted as glaciofluvial in origin. A variable, pervasively deformed to massive clast‐rich sandy diamicton is interpreted as the product of an actively deforming subglacial till layer. Massive block gravels, comprising two distinctive moraine ridges, reflect supraglacial sedimentation and ice‐marginal and subglacial reworking of heterogeneous proglacial sediments during the Little Ice Age and an earlier more extensive advance. Visual estimation of the relative abundance of these lithofacies suggests that the sandy gravel lithofacies is of the most volumetric importance, followed by the diamicton and block gravels. Sedimentological analysis suggests that the role of a deforming basal till layer has been the dominant factor controlling glacier flow throughout the Little Ice Age, punctuated by shorter (warmer and wetter climatic) periods where high water pressures may have played a more important role. These results contribute to the database that facilitates discrimination of past glacier thermal regimes and dynamics in areas that are no longer glacierized, as well as older glaciations in the geological record.  相似文献   
30.
The Guil River Valley (Queyras, Southern French Alps) is prone to catastrophic floods, as the long historical archives and Holocene sedimentary records demonstrate. In June 2000, the upper part of this valley was affected by a “30-year” recurrence interval (R.I.) flood. Although of lower magnitude and somewhat different nature from that of 1957 (>100-year R.I. flood), the 2000 event induced serious damage to infrastructure and buildings on the valley floor. Use of methods including high-resolution aerial photography, multi-date mapping, hydraulic calculations and field observations made possible the characterisation of the geomorphic impacts on the Guil River and its tributaries. The total rainfall (260 mm in four days) and maximum hourly intensity (17.3 mm h−1), aggravated by pre-existing saturated soils, explain the immediate response of the fluvial system and the subsequent destabilisation of slopes. Abundant water and sediment supply (landsliding, bank erosion), particularly from small catchment basins cut into slaty, schist bedrock, resulted in destructive pulses of debris flow and hyperconcentrated flows. The specific stream power of the Guil and its tributaries was greater than the critical stream power, thus explaining the abundant sediment transport. The Guil discharge was estimated as 180 m3 s−1 at Aiguilles, compared to the annual mean discharge of 6 m3 s−1 and a June mean discharge of 18 m3 s−1. The impacts on the Guil valley floor (flooding, aggradation, generalised bank erosion and changes in the river pattern) were widespread and locally influenced by variations in the floodplain slope and/or channel geometry. The stream partially reoccupied former channels abandoned or modified in their geometry by various structures built during the last four decades, as exemplified by the Aiguilles case study, where the worst damage took place. A comparative study of the geomorphic consequences of both the 1957 and 2000 floods shows that, despite their poor maintenance, the flood control structures built after the 1957 event were relatively efficient, in contrast to unprotected places. The comparison also demonstrates the role of land-use changes (conversion from traditional agro-pastoral life to a ski/hiking-based economy, construction of various structures) in reducing the Guil channel capacity and, more generally, in increasing the vulnerability of the human installations. The efficiency of the measures taken after the 2000 flood (narrowing and digging out of the channel) is also assessed. Final evaluation suggests that, in such high mountainous environments, there is a need to keep most of the 1957 flooded zone clear of buildings and other structures (aside from the existing villages and structures of particular economic interest), in order to enable the river to migrate freely and to adjust to exceptional hydro-geomorphic conditions without causing major damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号