首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   9篇
  国内免费   5篇
测绘学   1篇
大气科学   12篇
地球物理   13篇
地质学   52篇
海洋学   8篇
天文学   9篇
自然地理   10篇
  2023年   1篇
  2021年   6篇
  2020年   5篇
  2019年   3篇
  2018年   8篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   8篇
  2013年   6篇
  2012年   5篇
  2011年   11篇
  2010年   6篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1981年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
61.
In the San Marcos ranges of Cuatrociénegas, NE Mexico, several sediment-hosted copper deposits occur within the boundary between the Coahuila Block, a basement high mostly granitic in composition and Late Paleozoic to Triassic in age, and the Mesozoic Sabinas rift basin. This boundary is outlined by the regional-scale synsedimentary San Marcos Fault. At the basin scale, the copper mineralization occurs at the top of a ~1000 m thick red-bed succession (San Marcos Formation, Berrisian), a few meters below a conformable, transitional contact with micritic limestones (Cupido Formation, Hauterivian to Aptian). It consists of successive decimeter-thick roughly stratiform copper-rich horizons placed just above the red-beds, in a transitional unit of carbonaceous grey-beds grading to micritic limestones. The host rocks are fine- to medium-grained arkoses, with poorly sorted and subangular to subrounded grains. The detrital grains are cemented by quartz and minor calcite; besides, late iron oxide grain-coating cement occurs at the footwall unmineralized red-beds. The source area of the sediments, indicated by their modal composition, is an uplifted basement. The contents of SiO2 (40.70–87.50 wt.%), Al2O3 (5.91–22.00 wt.%), K2O (3.68–12.50 wt.%), Na2O (0.03–2.03 wt.%) and CaO (0.09–3.78 wt.%) are within the ranges expected for arkoses. Major oxide ratios indicate that the sedimentary-tectonic setting was a passive margin.The outcropping copper mineralization essentially consists in a supergene assemblage of chrysocolla, malachite and azurite. All that remains of the primary mineralization are micron-sized chalcocite grains shielded by quartz cement. In addition, pyrite subhedral grains occur scattered throughout the copper-mineralized horizons. In these weathered orebodies copper contents range between 4.24 and 7.72 wt.%, silver between 5 and 92 ppm, and cobalt from 8 to 91 ppm. Microthermometric measurements of fluid inclusions in quartz and calcite crystals from footwall barren veinlets gave temperatures of homogenization between 98 °C and 165 °C, and ice-melting temperatures between ?42.5 °C and ?26.1 °C.The primary copper mineralization formed during the early diagenesis, contemporary with the active life of the Sabinas Basin. The mineralizing fluids were dense, near neutral, moderately oxidized brines that originally formed from seawater that, driven by gravity, infiltrated to the deepest parts of the basin and dissolved evaporites. As a result, they became hydrothermal fluids of moderate temperature capable of leaching high amounts of copper. The source of this metal could be mafic detrital grains and iron oxides of the underlying Jurassic and Lower Cretaceous red-beds. Copper precipitation took place when the brines passed through the redox boundary marked by the transition from red- to grey-beds. The upward movement of the brines was promoted by a high heat flow that allowed their convective circulation and their ascent along the synsedimentary San Marcos Fault.  相似文献   
62.
A petrological investigation of abyssal, plagioclase-free spinel peridotite drilled during ODP cruise 153 in the North Atlantic revealed that the peridotite represent refractory, partial residual mantle material that experienced depletion of incompatible trace elements during upper mantle melting. The degree of partial melting as estimated from spinel compositions was c. 12%. Fractionated middle and heavy rare earth elements imply polybaric melting, with c. 1–4% initial melting in the garnet peridotite stability field and subsequent partial melting of ~7–10% in the spinel peridotite stability field. Geothermobarometric investigations revealed that the solid-state equilibration of the spinel peridotite occurred at some 1,100–1,150°C and c. 20–23 kbar, corresponding to an equilibration depth of c. 70?±?5 km and an unusually low thermal gradient of some 11–17°C/km. A thermal re-equilibration of the peridotite occurred at ~850–1,000°C at similar depths. Naturally, the initial mantle melting in the garnet-peridotite stability field must have commenced at depths greater than 70?±?5 km. It is likely that the residual peridotite rose rapidly through the lithospheric cap towards the ridge axis. The exhumation of the abyssal peridotite occurred, at least in parts, via extensional detachment faulting. Given the shallow to moderate dip angles of the fault surfaces, the exhumation of the peridotite from its equilibration depth would imply an overall ridge-normal horizontal displacement of c. 50–160 km if tectonic stretching and detachment faulting were the sole exhumation mechanism.  相似文献   
63.
A groundwater sampling campaign was carried out in the summer of 2013 in a low-temperature geothermal system located in Juventino Rosas (JR) municipality, Guanajuato State, Mexico. This groundwater presents high concentrations of As and F? and high Rn counts, mainly in wells with relatively higher temperature. The chemistry of major elements was interpreted with different methods, like Piper and D’Amore diagrams. These diagrams allowed for classification of four groundwater types located in three hydrogeological environments. The aquifers are hosted mainly in alluvial-lacustrine sediments and volcanic rocks in interaction with fault and fracture systems. The subsidence, faults and fractures observed in the study area can act as preferential channels for recharge and also for the transport of deep fluids to the surface, especially in the basin plain. The formation of a piezometric dome and the observed hydrochemical behavior of groundwater suggest a possible origin of the As and F?. Geochemical processes occurring during water–rock interaction are related to high concentrations of As and F?. High temperatures and alteration processes (like rock weathering) induce dissolution of As and F?-bearing minerals, increasing the content of these elements in groundwater.  相似文献   
64.
Forest fires and post-fire practices influence sediment connectivity (SC). In this study, we use the ‘aggregated index of connectivity’ (AIC) to assess SC in five Mediterranean catchments (198–1090 ha) affected by a wildfire in 2012 in south-eastern Spain. Two temporal scenarios were considered, immediately after the fire and before post-fire management, and 2 years after the fire including all practices (hillslope barriers, check-dams, afforestation, salvage logging and skid trails). One LiDAR (light detection and ranging)-derived digital elevation model (DEM, 2 m × 2 m resolution) was generated, per scenario. The five catchment outlets were established as the computation target (AICOUT), and structural and functional SC were calculated. Index outputs were normalized to make the results of the non-nested catchments comparable (AICN-OUT). The output analysis includes the SC distribution along the catchments and at local scale (929 sub-catchments, 677 in the burned area), the hillslope and channel measures' effect on SC, and a sedimentological analysis using observed area-specific sediment yield (SSY) at 10 new (built after post-fire practices) concrete check-dams located in the catchments (SSY = 1.94 Mg ha−1 yr−1; σ = 1.22). The catchments with more circular shapes and steeper slopes were those with higher AICN-OUT. The structural SC maps – removing the rainfall erosivity influence – allowed evaluating the actual role played by the post-fire practices that reduced SC ( x¯= − 1.19%; σ = 0.41); while functional SC was linked to the actual change of SC ( x¯= + 5.32%; σ = 0.62). Hillslope treatments resulted in significant changes on AICN-OUT at sub-catchment scale with certain disconnectivity. A good and positive correlation was found between the SSY and the changes of AICN-OUT. However, the coarse DEM resolution explained the lack of effect of the rock check-dams – located on the secondary channels – on AICN-OUT. AICN-OUT proved to be a useful tool for decision making in post-fire restoration, but an optimal input data is still necessary to refine calculations.  相似文献   
65.
The physicochemical and biological characteristics of coastal waters form a gradient extending from land to ocean. In the Mediterranean this gradient is particularly large, due to the sea’s weak tides. Within coastal waters, those waters in contact with land are called coastal inshore waters (CIW), defined herein as between 0 and 200 m from the shoreline. Here we present the first physicochemical and biological characterization of CIW of the NW Mediterranean Sea. This case study is based on 19 years of data collected from coastal inshore (CIW; 0–200 m), nearshore (CNW; 200–1500 m), and offshore (COW; >1500 m) waters of the Catalan coast. Analyses of these data showed that the physicochemical and biological characteristics of CIW differ significantly from those of CNW and COW due to: (1) significantly higher concentrations of dissolved inorganic nutrients (nitrate = 11.07 μM, nitrite = 0.52 μM, ammonium = 6.43 μM, phosphate = 0.92 μM, silicates = 5.99 μM) and chlorophyll-a (=2.42 μg/L) in CIW than in either CNW or COW (in some cases up to one order of magnitude); (2) a greater variability of dissolved inorganic nutrients and chlorophyll-a in CIW than in CNW and COW, and (3) the presence of a mostly urban population and the effects of river inflows as a primary source of CIW variability but with minimal impact on CNW or COW. In addition, the risk of eutrophication was found to be highest in CIW, placing human and environmental interests at greater risk than in the outermost coastal waters. The results highlight the importance of considering the distinctive physicochemical and biological properties of CIW in future coastal waters studies. This is of major importance in assessments of eutrophication and coastal water quality, not only to identify the pressure–impact relationships but also to allow the timely detection of local environmental problems and thus avoid endangering the unique communities of CIW and ensuring the sustainability of human activities. In conclusion, CIW characterization is essential to integrate coastal zone management.  相似文献   
66.
A multi-proxy study of short sediment cores recovered in small, karstic Lake Estanya (42°02?? N, 0°32?? E, 670 m.a.s.l.) in the Pre-Pyrenean Ranges (NE Spain) provides a detailed record of the complex environmental, hydrological and anthropogenic interactions occurring in the area since medieval times. The integration of sedimentary facies, elemental and isotopic geochemistry, and biological proxies (diatoms, chironomids and pollen), together with a robust chronological control, provided by AMS radiocarbon dating and 210Pb and 137Cs radiometric techniques, enabled precise reconstruction of the main phases of environmental change, associated with the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the industrial era. Shallow lake levels and saline conditions with poor development of littoral environments prevailed during medieval times (1150?C1300 AD). Generally higher water levels and more dilute waters occurred during the LIA (1300?C1850 AD), although this period shows a complex internal paleohydrological structure and is contemporaneous with a gradual increase of farming activity. Maximum lake levels and flooding of the current littoral shelf occurred during the nineteenth century, coinciding with the maximum expansion of agriculture in the area and prior to the last cold phase of the LIA. Finally, declining lake levels during the twentieth century, coinciding with a decrease in human pressure, are associated with warmer climate conditions. A strong link with solar irradiance is suggested by the coherence between periods of more positive water balance and phases of reduced solar activity. Changes in winter precipitation and dominance of NAO negative phases would be responsible for wet LIA conditions in western Mediterranean regions. The main environmental stages recorded in Lake Estanya are consistent with Western Mediterranean continental records, and show similarities with both Central and NE Iberian reconstructions, reflecting a strong climatic control of the hydrological and anthropogenic changes during the last 800 years.  相似文献   
67.
We assessed the effectiveness of pulse flows in facilitating the upstream migration of an imperiled summer-run Chinook salmon (Oncorhynchus tshawytscha) stock in the Puntledge River, BC, Canada. During July and August, over 3 years, we tracked radio-tagged fish (n = 100) in a reach of the Puntledge River where water is diverted for power generation, resulting in stable low flows that are believed to impede migration. Over the course of  13 pulse flows, we measured migration rate, passage rate at natural barriers that are difficult to pass during low flows, movement away from the turbine outlet pool that creates distracting flows, and locomotor activity. Mean river flow during the peak of the pulses varied from 12.1 to 42.5 m3 s?1 and was at least 6.1 m3 s?1 above residual base flows. Typically, the pulse flows lasted 48 h. Migration rate was higher during some pulse flows, but results varied among pulses. Passage at natural barriers was only higher during an abnormal pulse where flows reached twice that of the prescribed flow (i.e., 24+ m3 s?1). Some fish moved away from the turbine outlet pool during pulse flows. Pulse flows did not affect fish activity levels, as measured by electromyogram telemetry. Although the effect of pulsed flows on the migration of the Puntledge River summer-run Chinook salmon was unclear, no negative impacts, such as hyperactivity or downstream displacement were observed. The use of pulse flows as a management tool still requires further research.  相似文献   
68.
Boiling can be inferred from fluid inclusion microthermometry studies when a progressive increase in apparent salinity is observed along with a decrease of homogenization temperature (TH) and depth, thus reflecting the partitioning of non-volatile solutes into the liquid phase during steam loss. We propose a model for fluid evolution during boiling based on mass and heat balance equations, which establishes paths in the TH-salinity space that can be compared with fluid inclusion data to confirm or discard boiling. Additionally, the model allows calculating paleo-depths, for which the effect of steam bubbles lowering the hydrostatic pressure is taken into account.  相似文献   
69.
Abstract

Integrating local and Indigenous knowledge into land-use planning and the assessment of ecosystems services requires reliable, quantitative data. We tested two approaches to obtain such data by quantifying farmer opinion of different land-covers in Eastern Panama using (1) the analytic hierarchy process (AHP) and (2) a simpler ranking and scoring technique. Both methods produce a set of numerical values reflecting the ability of land-covers to deliver ecological and socio-economic criteria. We present our experience with both methods and offer recommendations for researchers looking to quantify landholder opinion. The AHP survey was relatively long (on average it took 19?min to complete per criterion) and we faced problems with inconsistent responses. In contrast, the ranking and scoring method was much quicker (only 3?min per criterion) and therefore may be more suitable for gathering more data from a larger number of farmers.  相似文献   
70.
The metamorphic sequences of the Saxonian Erzgebirge were thoroughly overprinted by a Variscan medium-pressure event under amphibolite facies conditions. However, eclogitic relics documenting an older high-pressure event are widespread. P-T conditions of the eclogite-facies metamorphism systematically decrease, over a distance of 50 km, from about >29 kbar/850°C, in the central part, to 20–24 kbar/650°C, in the westernmost part of the Erzgebirge crystalline complex. A distinct gap in P-T conditions exists between the central and the western Erzgebirge coinciding with the fault zone of the Flöha syncline. Therefore, the eclogitebearing sequences are assumed to represent at least two different nappe units. The lower-grade eclogite assemblages in the western Erzgebirge display a continuous metamorphic zonation with a gradual decrease of peak metamorphic temperatures towards the west. Assemblages formed in the stability field of coesite and thus indicating a regional ultra-high pressure metamorphism, are restricted to the central Erzgebirge, where they are widespread in the eclogites, but also present in metaacidic country rocks. The same high-temperature/high-pressure conditions, testifying to a burial of at least 100 km, were independently recorded for the ultramafic garnet pyroxenites associated with the eclogites of the central Erzgebirge. Mineral relics included in the eclogite phases and mineral assemblages formed by retrograde reactions permit reconstruction of the prograde and retrograde P-T paths in the different parts of the Erzgebirge crystalline complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号