首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
测绘学   1篇
地球物理   3篇
地质学   4篇
海洋学   3篇
天文学   25篇
自然地理   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
  1988年   1篇
  1942年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
31.
32.
33.
We have calculated integral fluences of solar protons and helium nuclei at 19 energy thresholds between 1.6 and 90 MeV/n from the SOHO/ERNE measurements during the years 1996–2005. We have also calculated fluences of oxygen and iron in the energy range from 10 up to a few hundred MeV/n for nineteen solar energetic particle (SEP) events. These are the first results of the work aiming at a full employment of the ERNE data in investigating the fluence distributions of SEP events over the entire solar activity cycle 23 and in deriving the total dose received on-board SOHO during its mission. Some instrumental problems are identified and future developments are presented.  相似文献   
34.
Energetic particle precipitation couples the solar wind to the Earth's atmosphere and indirectly to Earth's climate. Ionisation and dissociation increases, due to particle precipitation, create odd nitrogen (NOx) and odd hydrogen (HOX) in the upper atmosphere, which can affect ozone chemistry. The long-lived NOx can be transported downwards into the stratosphere, particularly during the polar winter. Thus, the impact of NOx is determined by both the initial ionisation production, which is a function of the particle flux and energy spectrum, as well as transport rates. In this paper, we use the Sodankylä Ion and Neurtal Chemistry (SIC) model to simulate the production of NOx from examples of the most representative particle flux and energy spectra available today of solar proton events (SPE), auroral energy electrons, and relativistic electron precipitation (REP). Large SPEs are found to produce higher initial NOx concentrations than long-lived REP events, which themselves produce higher initial NOx levels than auroral electron precipitation. Only REP microburst events were found to be insignificant in terms of generating NOx. We show that the Global Ozone Monitoring by Occultation of Stars (GOMOS) observations from the Arctic winter 2003–2004 are consistent with NOx generation by a combination of SPE, auroral altitude precipitation, and long-lived REP events.  相似文献   
35.
We investigate coronal transients associated with a GOES M6.7 class flare and a coronal mass ejection (CME) on 13 July 2004. During the rising phase of the flare, a filament eruption, loop expansion, a Moreton wave, and an ejecta were observed. An EIT wave was detected later on. The main features in the radio dynamic spectrum were a frequency-drifting continuum and two type II bursts. Our analysis shows that if the first type II burst was formed in the low corona, the burst heights and speed are close to the projected distances and speed of the Moreton wave (a chromospheric shock wave signature). The frequency-drifting radio continuum, starting above 1 GHz, was formed almost two minutes prior to any shock features becoming visible, and a fast-expanding piston (visible as the continuum) could have launched another shock wave. A possible scenario is that a flare blast overtook the earlier transient and ignited the first type II burst. The second type II burst may have been formed by the same shock, but only if the shock was propagating at a constant speed. This interpretation also requires that the shock-producing regions were located at different parts of the propagating structure or that the shock was passing through regions with highly different atmospheric densities. This complex event, with a multitude of radio features and transients at other wavelengths, presents evidence for both blast-wave-related and CME-related radio emissions.  相似文献   
36.
The total photoelectron and secondary electron fluxes are calculated at different times and altitudes along the trajectory of Mars Global Surveyor passing through the nightside and dayside martian ionosphere. These results are compared with the electron reflectometer experiment on board Mars Global Surveyor. The calculated electron spectra are in good agreement with this measurement. However, the combined fluxes of proton and hydrogen atom as calculated by E. Kallio and P. Janhunen (2001, J. Geophys. Res.106, 5617-5634) were found to be 1-2 orders of magnitude smaller than the measured spectra. We have also calculated ionization rates and ion and electron densities due to solar EUV, X-ray, and electron-proton-hydrogen atom impacting with atmospheric gases of Mars at solar zenith angles of 75°, 105°, and 127°. In the vicinity of the dayside ionization peak, it is found that the ion production rate caused by the precipitation of proton-hydrogen atom is larger than the X-ray impact ionization rate while at all altitudes, the photoionization rate is always greater than either of the two. Moreover, X-rays contribute greatly to the photoelectron impact ionization rate as compared to the photoion production rate. The calculated electron densities are compared with radio occultation measurements made by Mars Global Surveyor, Viking 1, and Mars 5 spacecraft at these solar zenith angles. The dayside ionosphere produced by proton-hydrogen atom is smaller by an order of magnitude than that produced by solar EUV radiation. X-rays play a significant role in the dayside ionosphere of Mars at the altitude range 100-120 km. Solar wind electrons and protons provide a substantial source for the nightside ionosphere. These calculations are carried out for a solar minimum period using solar wind electron flux, photon flux, neutral densities, and temperatures under nearly the same areophysical conditions as the measurements.  相似文献   
37.
Flux measurements of solar energetic particles (SEPs) in the ERNE instrument onboard SOHO indicate that the abundance of 4He-nuclei compared to protons in the energy range up to 100 MeV nucl–1 was exceptionally high during the particle events on 27 May 1998 and 28 December 1999. The 4He/p ratio stayed between 0.15–0.50 for more than ten hours. There was also a prolonged enhancement in helium-3, 3He/4H 1%. Observations of EIT and LASCO on board SOHO confirm that the originators of both SEP events were western eruptions, flares and coronal mass ejections (CMEs). The onset of the SEP release took place close to the maximum of flares which were probably triggered by the rising CMEs. The observations suggest that the SEP events were started with the flare-(pre)accelerated particles, but impact of the CME-associated shocks might explain the continuation and modification of the helium and proton fluxes well after the flare production. These observations support the idea that the helium enhancements in the CME-associated events reflect the availability of seed particles that originate previously in flares.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号