首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   19篇
  国内免费   3篇
测绘学   7篇
大气科学   8篇
地球物理   125篇
地质学   188篇
海洋学   24篇
天文学   16篇
综合类   2篇
自然地理   7篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   10篇
  2020年   4篇
  2019年   5篇
  2018年   30篇
  2017年   21篇
  2016年   35篇
  2015年   19篇
  2014年   38篇
  2013年   31篇
  2012年   27篇
  2011年   32篇
  2010年   28篇
  2009年   28篇
  2008年   11篇
  2007年   9篇
  2006年   10篇
  2005年   3篇
  2004年   4篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有377条查询结果,搜索用时 15 毫秒
321.
Eutrophication plays a crucial role in coastal systems, driving changes in the composition and abundance of flora and fauna with consequent effects for the entire ecosystem. Sensitive to nutrient levels, micro- and macroalgal blooms serve as valuable indicators of eutrophication. The San Antonio Bay (Northern Argentinean Patagonia, 40° 43′ S, 64° 56′ W) provides an appropriate system to study in situ eutrophication processes on coastal communities. In a multi-scale approach, using two different kind of settlement substrates (micro: polyethylene terephthalate, and macro: ceramic), the present study followed benthic algal dynamics over one year, distinguishing changes in natural succession and seasonality. Strong differences were found in the biofilm assemblages after three days, marked by tube dwelling diatoms and Cocconeis spp. under high nutrient-grazer conditions and needle like diatoms (e.g. Nitzschia spp., Tabularia spp.) under lower nutrient-grazer loads. The succession continued by the colonization of macroalgae, with a higher recruitment rate in the nutrient and grazer rich environment with a concomitant higher diversity. Our results show that under higher nutrient-grazer conditions natural benthic succession not only differs in trajectory but in its final taxa composition promoting higher biodiversity and biomass accumulation. In addition, taxa specific substrate preferences interfere with the observed eutrophication pattern, suggesting substrate dependant interrelations between the bloom forming taxa. These findings provide evidence that nutrient enrichment can not only affect an established assemblage but also affect the early succession stages, changing the succession trajectory and thus the final assemblage.  相似文献   
322.
323.
324.
Western Anatolia is one of the world’s most seismically active regions. A nearly N–S-oriented extension caused the formation of E–W- and NE–SW-trending major grabens, creating the potential for earthquakes with magnitudes ≥ 5. The fault segments of the NE-trending Çameli Basin were evaluated using geomorphic indices, common tools for assessment of relative tectonic activity in such areas. Quantitative measurement of geomorphic indices including mountain-front sinuosity (Smf; 1.35–2.39), valley floor width-to-height ratios (Vf; 0.08?0.37), and hypsometric integral (HI; 0.31–1.05) suggest relatively higher tectonic activity along western and southern part of the basin. Hypsometric curves for all segments of the faults mostly exhibit concave or straight profiles, signifying existence of young mountain fronts in the Çameli Basin. These calculations indicate that the Çameli Basin is tectonically active and, southern/south-western areas of this depression have earthquake potential, consistent with epicentres of recent earthquakes, occurred along some fault segments. Possible reason of this activity seems to be related to the E–W-trending corridor lying between the Gulf of Gökova and south-eastern part of the Çameli Basin, represented by active normal faults. These findings should be valid beyond the Çameli Basin for similar situations along the Isparta Angle’s western margin.  相似文献   
325.
326.
327.
The debate about whether Eocene magmatism is considered to be post-collisional or subduction-related or not still continues. Here we offer new 40Ar-39Ar ad U-Pb zircon geochronology, mineral chemistry, bulk rock and Sr-Nd-Pb isotope geochemistry data obtained from the southern dike (SD) suite, in comparison with the northern dike (ND) suite, from the Eastern Pontides. The geochronological data indicate that the SD suite erupted between 45.89 and 45.10 Ma corresponding to the Lutetian (Middle Eocene). The magmas of the ND suite are characterised by slightly more alkaline affinity compared to the SD suite. The trace and rare earth element (REEs) content of the SD suite is characterised by large ion lithophile element (LILEs; Sr, K2O, Ba, Rb) enrichment and depletion of Nb, Ta, and TiO2 elements to different degree with high Th/Yb ratios, which indicate that the magmas forming the SD and ND suites were derived from lithospheric mantle sources enriched by mostly slab-derived fluids in the spinel stability field. The Sr, Nd and Pb radiogenic isotope ratios of the dikes support the view that the magma for the hydrous group (H-SD) was derived from a relatively more enriched mantle source than the other SD and ND suites. The ND suite and the anhydrous group (A-SD) display similar geochemical features characterised by moderate light earth element (LREE)/heavy rare earth element (HREE) ratios, while the H-SD group has respectively lower LREE/HREE ratios indicating higher melting degree. Detailed considerations of the alkalinity, enrichment and partial melting degree for the source of the studied volcanic rocks indicate that the magmas of the northern dike suite are characterised by slightly more alkaline affinity, whereas the magmas throughout the southern dike suite show increments in the enrichment rate and melting degree. In light of the obtained data and comparative interpretations, the geodynamic evolution and differences in petrogenetic character of the Lutetian magmas from both the northern and southern parts of the Eastern Pontides may be explained by different degrees of melting of a net veined mantle source initially metasomatized by mostly subduction fluids during asthenospheric upwelling due to fragmented asymmetric delamination in a post-collisional extensional tectonic environment.  相似文献   
328.
329.
This study devises a new analytical relationship to determine the porosity of water-saturated soils at shallow depth using seismic compressional and shear wave velocities. Seismic refraction surveys together with soil sample collection were performed in selected areas containing water-saturated clay–silt, sand and gravely soils. Classification of clay–silt, sand and gravel dense soils provided the coefficient of experimental equation between the data sets, namely, Poisson's ratio, shear modulus and porosity values. This study presents a new analytical relationship between Poisson's ratio and shear modulus values, which are obtained from seismic velocities and porosity values of water-saturated material computed from water content and grain densities, which are determined by laboratory analysis of disturbed samples. The analytical relationship between data sets indicates that when the shear modulus of water-saturated loose soil increases, porosity decreases logarithmically. If shear modulus increases in dense or solid saturated soils, porosity decreases linearly.  相似文献   
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号