首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   8篇
  国内免费   3篇
测绘学   4篇
大气科学   20篇
地球物理   59篇
地质学   173篇
海洋学   8篇
天文学   55篇
自然地理   15篇
  2020年   3篇
  2018年   6篇
  2017年   7篇
  2015年   5篇
  2014年   5篇
  2013年   16篇
  2012年   7篇
  2011年   13篇
  2010年   26篇
  2009年   9篇
  2008年   14篇
  2007年   16篇
  2006年   13篇
  2005年   10篇
  2004年   7篇
  2003年   7篇
  2002年   8篇
  2001年   6篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1990年   3篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1982年   3篇
  1979年   8篇
  1978年   7篇
  1977年   2篇
  1973年   3篇
  1971年   2篇
  1970年   4篇
  1969年   2篇
  1966年   2篇
  1965年   2篇
  1962年   4篇
  1960年   2篇
  1955年   2篇
  1954年   2篇
  1953年   2篇
  1948年   5篇
  1931年   2篇
  1921年   2篇
排序方式: 共有334条查询结果,搜索用时 31 毫秒
211.
212.
Deep 3D thermal modelling for the city of Berlin (Germany)   总被引:1,自引:1,他引:0  
This study predicts the subsurface temperature distribution of Germany’s capital Berlin. For this purpose, a data-based lithosphere-scale 3D structural model is developed incorporating 21 individual geological units. This model shows a horizontal grid resolution of (500 × 500) m and provides the geometric base for two different approaches of 3D thermal simulations: (1) calculations of the steady-state purely conductive thermal field and (2) simulations of coupled fluid flow and heat transport. The results point out fundamentally different structural and thermal configurations for potential geothermal target units. The top of the Triassic Middle Buntsandstein strongly varies in depth (159–2,470 m below sea level) and predicted temperatures (15–95 °C), mostly because of the complex geometry of the underlying Permian Zechstein salt. The top of the sub-salt Sedimentary Rotliegend is rather flat (2,890–3,785 m below sea level) and reveals temperatures of 85–139 °C. The predicted 70 °C-isotherm is located at depths of about 1,500–2,200 m, cutting the Middle Buntsandstein over large parts of Berlin. The 110 °C-isotherm at 2,900–3,700 m depth widely crosscuts the Sedimentary Rotliegend. Groundwater flow results in subsurface cooling the extent of which is strongly controlled by the geometry and the distribution of the Tertiary Rupelian Clay. The cooling effect is strongest where this clay-rich aquitard is thinnest or missing, thus facilitating deep-reaching forced convective flow. The differences between the purely conductive and coupled models highlight the need for investigations of the complex interrelation of flow- and thermal fields to properly predict temperatures in sedimentary systems.  相似文献   
213.
214.
The White-Inyo Range lies within the regional transition from Paleozoic-Precambrian North American continental basement to outboard Mesozoic and younger accreted terranes and a superimposed Andean-type arc. In the central White Mountains, the metaluminous Barcroft granodiorite invaded a major NE-striking, SE-dipping high-angle reverse fault—the Barcroft break. Because it is a relatively isolated igneous body and is well exposed over an elevation range of 1,500–4,000 m, its thermal history and that of the surrounding superjacent section are clearer than those of nearly coeval, crowded plutons emplaced in the hotter Sierra Nevada belt. The Barcroft pluton was emplaced as a compositionally heterogeneous series of areally scattered melt pulses episodically injected over the approximate interval 167–161 Ma. The oldest dated rocks are relatively quartzofeldspathic, whereas the youngest is more ferromagnesian, suggesting progressive partial fusion of a relatively mafic protolith. Heavy rare earth-enriched zircons indicate that Barcroft melts were derived at mid-crustal depths from a previously emplaced metabasaltic protolith containing plagioclase but lacking garnet. Granodioritic magma genesis involved the possible mixing of mafic and felsic melts, as well as very minor assimilation of country rocks, but mainly by fractional fusion and crystallization. Bulk chemical, rare earth, and isotopic data suggest that analyzed Barcroft rocks are members of a single suite. Granodioritic rocks are slightly more magnetite-rich at higher elevations on the NE, nearer the roof of the pluton. Earlier thermobarometry chronicled cooling and re-equilibration of the Barcroft pluton from its margins inward, as well as from mid-crustal generation depths of ~25 km through ascent and stalling at ~10–12 km. Refractory phase assemblages crystallized along the pluton margins, whereas subsolidus minerals in the interior of the of body continued to exchange with upper crustal deuteric and surficial aqueous fluids during exhumation and cooling.  相似文献   
215.
The study of peak-ring basins and other impact crater morphologies transitional between complex craters and multi-ring basins is important to our understanding of the mechanisms for basin formation on the terrestrial planets. Mercury has the largest population, and the largest population per area, of peak-ring basins and protobasins in the inner solar system and thus provides important data for examining questions surrounding peak-ring basin formation. New flyby images from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have more than doubled the area of Mercury viewed at close range, providing nearly complete global coverage of the planet's surface when combined with flyby data from Mariner 10. We use this new near-global dataset to compile a catalog of peak-ring basins and protobasins on Mercury, including measurements of the diameters of the basin rim crest, interior ring, and central peak (if present). Our catalog increases the population of peak-ring basins by ∼150% and protobasins by ∼100% over previous catalogs, including 44 newly identified peak-ring basins (total=74) and 17 newly identified protobasins (total=32). A newly defined transitional basin type, the ringed peak-cluster basin (total=9), is also described. The new basin catalog confirms that Mercury has the largest population of peak-ring basins of the terrestrial planets and also places the onset rim-crest diameter for peak-ring basins at , which is intermediate between the onset diameter for peak-ring basins on the Moon and those for the other terrestrial planets. The ratios of ring diameter to rim-crest diameter further emphasize that protobasins and peak-ring basins are parts of a continuum of basin morphologies relating to their processes of formation, in contrast to previous views that these forms are distinct. Comparisons of the predictions of peak-ring basin-formation models with the characteristics of the basin catalog for Mercury suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. The relationship between impact-melt production and peak-ring formation is strengthened further by agreement between power laws fit to ratios of ring diameter to rim-crest diameter for peak-ring basins and protobasins and the power-law relation between the dimension of a melt cavity and the crater diameter. More detailed examination of Mercury's peak-ring basins awaits the planned insertion of the MESSENGER spacecraft into orbit about Mercury in 2011.  相似文献   
216.
217.
218.
219.
Repeated SN-explosion provide large amounts of thermal energy as well as energetic particles through a 1. order Fermi-process. Both effects together with the generation of Alfvén-waves are considered to drive a large scale outflow from a galaxy. These so-called galactic windstransport stellar material enriched by heavy elements into the intergalactic space explaining also the large amount of metals found inthe intergalactic gas. The present contribution is focused on time-dependenteffects which originate from galactic winds driven by a star burst activity. Shock waves travelling through the galactic wind and radiative cooling within the expanding plasma lead to complex flow structures. Depending e.g. on theSFR of the galaxy galactic winds can remove almost all ISM into the galactic halo and therefore cease a subsequent star formation.  相似文献   
220.
Abstract— Several solar gas rich lunar soils and breccias have trapped 40Ar/36Ar ratios >10, although solar Ar is expected to yield a ratio of <0.01. Radiogenic 40Ar produced in the lunar crust from 40K decay was outgassed into the lunar atmosphere, ionized, accelerated in the electromagnetic field of the solar wind, and reimplanted into lunar surface material. The 40Ar loss rate depends on the decreasing abundance of 40K. In order to calibrate the time dependence of the 40Ar/36Ar ratio in lunar surface material, the period of reimplantation of lunar atmospheric ions and of solar wind Ar was determined using the 235U‐136Xe dating method that relies on secondary cosmic‐ray neutron‐induced fission of 235U. We identified the trapped, fissiogenic, and cosmogenic noble gases in lunar breccia 14307 and lunar soils 70001‐8, 70181, 74261, and 75081. Uranium and Th concentrations were determined in the 74261 soil for which we obtain the 235U‐136Xe time of implantation of 3.25+0.38‐0.60 Ga ago. On the basis of several cosmogenic noble gas signatures we calculate the duration of this near surface exposure of 393 ± 45 Ma and an average shielding depth below the lunar surface of 73 ± 7 g/cm2. A second, recent exposure to solar and cosmic‐ray particles occurred after this soil was excavated from Shorty crater 17.2 ± 1.4 Ma ago. Using a compilation of all lunar data with reliable trapped Ar isotopic ratios and pre‐exposure times we infer a calibration curve of implantation times, based on the trapped40 Ar/36Ar ratio. A possible trend for the increase with time of the solar 3He/4He and 20Ne/22Ne ratios of about 12%/Ga and about 2%/Ga, respectively, is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号