首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   15篇
  国内免费   3篇
测绘学   3篇
大气科学   13篇
地球物理   39篇
地质学   52篇
海洋学   21篇
天文学   9篇
自然地理   15篇
  2021年   5篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   13篇
  2016年   11篇
  2015年   7篇
  2014年   9篇
  2013年   9篇
  2012年   5篇
  2011年   15篇
  2010年   9篇
  2009年   7篇
  2008年   6篇
  2007年   9篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1949年   1篇
排序方式: 共有152条查询结果,搜索用时 140 毫秒
61.
This work investigates how potential changes in trade patterns resulting from increased economic integration in the Asia-Pacific region may affect the risk for nonindigenous species spread to the United States. We construct an invasion risk index utilizing the results from a global economic modeling framework in tandem with data for climate similarities between trade partners. The index is based on risk of introduction, determined by changes in trade, and risk of establishment, given by terrestrial and marine climate similarities between countries. The results indicate that Japan may be the riskiest trade partner for the United States in the Asia-Pacific region from a nonindigenous species perspective. This is driven by large expected changes in trade and high environmental similarity between the two countries. This research provides the basis of a risk assessment prediction system to examine the effects of changes in trade on nonindigenous species risk, an important, novel contribution to the trade policy literature.  相似文献   
62.
Mitigating climate change will require innovation in energy technologies. Policy makers are faced with the question of how to promote this innovation, and whether to focus on a few technologies or to spread their bets. We present results on the extent to which public R&D might shape the future cost of energy technologies by 2030. We bring together three major expert elicitation efforts carried out by researchers at UMass Amherst, Harvard, and FEEM, covering nuclear, solar, Carbon Capture and Storage (CCS), bioelectricity, and biofuels. The results show experts believe that there will be cost reductions resulting from R&D and report median cost reductions around 20 % for most of the technologies at the R&D budgets considered. Although the improvements associated to solar and CCS R&D show some promise, the lack of consensus across studies, and the larger magnitude of the R&D investment involved in these technologies, calls for caution when defining what technologies would benefit the most from additional public R&D. In order to make R&D funding decisions to meet particular goals, such as mitigating climate change or improving energy security, or to estimate the social returns to R&D, policy makers need to combine the information provided in this study on cost reduction potentials with an analysis of the macroeconomic implications of these technological changes. We conclude with recommendations for future directions on energy expert elicitations.  相似文献   
63.
64.
Coastal wetlands, well recognized for their ecosystem services, have faced many threats throughout the USA and elsewhere. While managers require good information on the net impact of these combined stressors on wetlands, little such information exists. We conducted a 4-month mesocosm study to analyze the multiple stressor effects of precipitation changes, sea level rise, and eutrophication on the salt marsh plant Spartina alterniflora. Pots containing plants in an organic soil matrix were positioned in tanks and received Narragansett Bay (RI, USA) water. The study simulated three precipitation levels (ambient daily rain, biweekly storm, and drought), three levels of tidal inundations (high (15 cm below mean high water (MHW)), mean (MHW), and low (15 cm above MHW)), and two nutrient enrichment levels (unenriched and nutrient-enriched bay water). Our results demonstrate that storm and drought stressors led to significantly less above- and belowground biomass than those in ambient rain conditions. Plants that were flooded at high inundation had less belowground biomass, fine roots, and shoots. Nutrients had no detectable effect on aboveground biomass, but the enriched pots had higher stem counts and more fine roots than unenriched pots, in addition to greater CO2 emission rates; however, the unenriched pots had significantly more coarse roots and rhizomes, which help to build peat in organogenic marshes. These results suggest that multiple stressors of altered precipitation, sea level rise, and nutrient enrichment would lead to reduced marsh sustainability.  相似文献   
65.
To investigate the importance of seep primary production to the nutrition of Lophelia pertusa and associated communities and examine local trophic interactions, we analyzed stable carbon, nitrogen, and sulfur compositions in seven quantitative L. pertusa community collections. A significant seep signature was only detected in one of the 35 species tested (Provanna sculpta, a common seep gastropod) despite the presence of seep fauna at the three sample sites. A potential predator of L. pertusa was identified (Coralliophila sp.), and a variety of other trophic interactions among the fauna occupying the coral framework were suggested by the data, including the galatheid crab Munidopsis sp. 2 feeding upon hydroids and the polychaete Eunice sp. feeding upon the sabellid polychaete Euratella sp. Stable carbon abundances were also determined for different sections of L. pertusa skeleton representing different stages in the growth and life of the aggregation. There was no temporal trend detected in the skeleton isotope values, suggesting that L. pertusa settles in these areas only after seepage has largely subsided. Isotope values of individual taxa that were collected from both L. pertusa and vestimentiferan habitats showed decreasing reliance upon seep primary production with average age of the vestimentiferan aggregation, and finally, no seep signature was detected in the coral collections. Together our data suggest that it is the presence of authigenic carbonate substrata, a product of past seep microbial activity, as well as hydrodynamic processes that drive L. pertusa occurrence at seep sites in the Gulf of Mexico, not nutritional dependence upon primary production by seep microbes.  相似文献   
66.
Nitrogen inputs restructure ecosystems and can interact with other agents of ecological change and potentially intensify them. To examine the effects of nitrogen combined with those of elevation and competition, in 2005 we mapped vegetation and elevation within experimental plots that have been fertilized since 1970 in Great Sippewissett salt marsh, Cape Cod, MA, USA and compared the resulting effects on marsh vegetation. Decadal-scale chronic nutrient enrichment forced changes in cover and spatial distribution of different species. With increasing enrichment, there was a shift in species cover primarily involving loss of Spartina alterniflora and an increase in Distichlis spicata. Percent cover of near monocultures increased with nitrogen fertilization, owing mainly to the proliferation of D. spicata. The experimental fertilization prompted a shift from the short form of S. alterniflora to taller forms, hence increasing above-ground biomass, where this species managed to remain. Chronic enrichment increased upper and lower limits of the elevation range within which certain species occurred. The shift to increased cover of D. spicata was also associated with faster accretion of the marsh surface where this species was dominant, but not where S. alterniflora was dominant. Interactions among nutrient supply, elevation, and competition altered the direction of competitive success among different species of marsh plants, and forced changes in the spatial distribution and composition of the salt marsh plant communities. The results imply that there will be parallel changes in New England salt marshes owing to the widespread eutrophication of coastal waters and the increasing sea level rise. Knowing the mechanisms structuring marsh vegetative cover, and their role in modification of salt marsh accretion, may provide background with which to manage maintenance of affected coastal wetlands.  相似文献   
67.
The Umayyad qusour (desert palaces) are monumental structures built during the reign of the first caliphate of Islam. Usually dismissed as “pleasure palaces” or “hunting lodges,” some scholars are beginning to argue that these prominent structures were strategic interventions in the landscape. Until now, historians have relied mainly on textual, architectural and art-historical analyses of the qusour in order to understand Umayyad state architecture. This research proposes the use of spatial analysis through GIS to lend a new dimension to the discussion. The results of the analysis show that Umayyad qusour are carefully situated at routes of transhumance and water sources. The distribution pattern of the Umayyad qusour is clustered at the outlet of Wadi Sarhan, and there is actually line-of-sight communication between Azraq, Amra, Haranah, Muwaqqar, Umm al Walid, Mushatta, and Qastal. There is also a positive association between Umayyad qusour and their water sources. These results support the argument that the Umayyad qusour were built strategically at perennial water sources in order to monitor routes of transhumance amongst the socio-political centers of the period.  相似文献   
68.
Seagrass populations have been declining globally, with changes attributed to anthropogenic stresses and, more recently, negative effects of global climate change. We examined the distribution of Zostera marina (eelgrass) dominated beds in the York River, Chesapeake Bay, VA over an 8-year time period. Using a temperature-dependent light model, declines in upriver areas were associated with higher light attenuation, resulting in lower light availability relative to compensating light requirements of Z. marina compared with downriver areas. An inverse relationship was observed between SAV growth and temperature with a change between net bed cover increases and decreases for the period of 2004–2011 observed at approximately 23 °C. Z. marina-dominated beds in the lower river have been recovering from a die-off event in 2005 and experienced another near complete decline in 2010, losing an average of 97 % of coverage of Z. marina from June to October. These 2010 declines were attributed to an early summer heat event in which daily mean water temperatures increased from 25 to 30 °C over a 2-week time period, considerably higher than previous years when complete die-offs were not observed. Z. marina recovery from this event was minimal, while Ruppia maritima (widgeongrass) expanded its abundance. Water temperatures are projected to continue to increase in the Chesapeake Bay and elsewhere. These results suggest that short-term exposures to rapidly increasing temperatures by 4–5 °C above normal during summer months can result in widespread diebacks that may lead to Z. marina extirpation from historically vegetated areas, with the potential replacement by other species.  相似文献   
69.
Hyperspectral plant signatures can be used as a short-term, as well as long-term (100-year timescale) monitoring technique to verify that CO2 sequestration fields have not been compromised. An influx of CO2 gas into the soil can stress vegetation, which causes changes in the visible to near-infrared reflectance spectral signature of the vegetation. For 29 days, beginning on July 9, 2008, pure carbon dioxide gas was released through a 100-m long horizontal injection well, at a flow rate of 300 kg day−1. Spectral signatures were recorded almost daily from an unmown patch of plants over the injection with a “FieldSpec Pro” spectrometer by Analytical Spectral Devices, Inc. Measurements were taken both inside and outside of the CO2 leak zone to normalize observations for other environmental factors affecting the plants. Four to five days after the injection began, stress was observed in the spectral signatures of plants within 1 m of the well. After approximately 10 days, moderate to high amounts of stress were measured out to 2.5 m from the well. This spatial distribution corresponded to areas of high CO2 flux from the injection. Airborne hyperspectral imagery, acquired by Resonon, Inc. of Bozeman, MT using their hyperspectral camera, also showed the same pattern of plant stress. Spectral signatures of the plants were also compared to the CO2 concentrations in the soil, which indicated that the lower limit of soil CO2 needed to stress vegetation is between 4 and 8% by volume.  相似文献   
70.
Groundwater levels in basalt aquifers around the world have been declining for many years. Understanding water pathways is needed for solutions like artificial drainage. Water supply in the Palouse Basin, Washington and Idaho, USA, primarily relies on basalt aquifers. This study presents a combination of modeling and field observations to understand the spatial distribution of recharge pathways in the overlying Pleistocene sediments. A spatially distributed model was used to quantify potential recharge rates. The model shows clearly that recharge predominantly occurs through non-argilic soils and soils that are not underlain by fine-grained sediments, i.e. the upper area of the watershed. A field survey was conducted to determine recharge pathways from this area. It revealed 83 ?perennial springs. Drillings near springs showed connection of coarse-grained layers within the fine-grained Sediments of Bovill to these springs. Such layers, with streambed-like features, act as paleo-channels. Water from one of these coarse-grained layers had a similar electrical conductivity (200? ??S? cm?C1) to water from a downstream perennial spring, also suggesting the existence of a lateral conduit for deep percolation water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号