首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1764篇
  免费   86篇
  国内免费   32篇
测绘学   41篇
大气科学   186篇
地球物理   407篇
地质学   642篇
海洋学   139篇
天文学   288篇
综合类   5篇
自然地理   174篇
  2023年   6篇
  2022年   9篇
  2021年   33篇
  2020年   35篇
  2019年   26篇
  2018年   54篇
  2017年   45篇
  2016年   77篇
  2015年   50篇
  2014年   72篇
  2013年   114篇
  2012年   57篇
  2011年   105篇
  2010年   87篇
  2009年   105篇
  2008年   91篇
  2007年   102篇
  2006年   101篇
  2005年   69篇
  2004年   66篇
  2003年   53篇
  2002年   55篇
  2001年   44篇
  2000年   33篇
  1999年   38篇
  1998年   30篇
  1997年   19篇
  1996年   20篇
  1995年   18篇
  1994年   14篇
  1993年   18篇
  1992年   9篇
  1991年   19篇
  1990年   16篇
  1989年   16篇
  1987年   13篇
  1986年   19篇
  1985年   9篇
  1984年   6篇
  1983年   16篇
  1982年   13篇
  1981年   14篇
  1980年   12篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   7篇
  1975年   8篇
  1974年   7篇
  1973年   6篇
排序方式: 共有1882条查询结果,搜索用时 31 毫秒
951.
We report the discovery of WASP-10b, a new transiting extrasolar planet (ESP) discovered by the Wide Angle Search for Planets (WASP) Consortium and confirmed using Nordic Optical Telescope FIbre-fed Echelle Spectrograph and SOPHIE radial velocity data. A 3.09-d period, 29 mmag transit depth and 2.36 h duration are derived for WASP-10b using WASP and high-precision photometric observations. Simultaneous fitting to the photometric and radial velocity data using a Markov Chain Monte Carlo procedure leads to a planet radius of  1.28 R J   , a mass of  2.96 M J   and eccentricity of ≈0.06. WASP-10b is one of the more massive transiting ESPs, and we compare its characteristics to the current sample of transiting ESP, where there is currently little information for masses greater than ≈  2 M J   and non-zero eccentricities. WASP-10's host star, GSC 2752−00114 (USNO-B1.0 1214−0586164) is among the fainter stars in the WASP sample, with   V = 12.7  and a spectral type of K5. This result shows promise for future late-type dwarf star surveys.  相似文献   
952.
We report the discovery of a 7.3 M J exoplanet WASP-14b, one of the most massive transiting exoplanets observed to date. The planet orbits the 10th-magnitude F5V star USNO-B1 11118−0262485 with a period of 2.243 752 d and orbital eccentricity   e = 0.09  . A simultaneous fit of the transit light curve and radial velocity measurements yields a planetary mass of 7.3 ± 0.5 M J and a radius of 1.28 ± 0.08 R J. This leads to a mean density of about 4.6 g cm−3 making it the densest transiting exoplanets yet found at an orbital period less than 3 d. We estimate this system to be at a distance of  160 ± 20  pc. Spectral analysis of the host star reveals a temperature of  6475 ± 100 K, log  g = 4.07  cm s−2 and   v sin  i = 4.9 ± 1.0  km s−1, and also a high lithium abundance,  log  N (Li) = 2.84 ± 0.05  . The stellar density, effective temperature and rotation rate suggest an age for the system of about 0.5–1.0 Gyr.  相似文献   
953.
954.
Food security in China underlies the foundation of the livelihood and welfare for over one-fifth of the world's population. Soil degradation has an immense negative impact on the productive capacity of soils. We simulated the effect of soil degradation, which occurs in combination with increases in population size, urbanization rate, cropping intensity and decrease in cropland area, on long-term food security in China using a web-based land evaluation system. Our results predict that food crops may experience a 9% loss in productivity by 2030 if the soil continues to be degraded at the current rate (business-as-usual scenario, BAU). Productivity losses will increase to the unbearable level of 30% by 2050 should the soil be degraded at twice the present rate (double-degradation scenario, 2× SD). China's capacity for producing food from agricultural crops will be either adversely affected by the loss of cropland area (130, 113 and 107 million ha in 2005, 2030 and 2050, respectively) or favorably affected by agricultural intensification (in terms of the multi-cropping index at 120, 133 and 147% in 2005, 2030 and 2050, respectively). The loss of cropland is predicted to cause a 13–18% decrease in China's food production capacity by 2030–2050 relative to its 2005 level of 482 Mt, while agricultural intensification is predicted to cause an 11–23% increase. In total, China will be able to achieve a production level of 424 and 412 Mt by 2030 and 2050, respectively, under BAU, while this production will be only 386 and 339 Mt under 2× SD, respectively. In per capita terms, the relationship between food supply and demand will turn from an 18% surplus in 2005 to 3–5%, 14–18% and 22–32% deficits by 2030–2050 under the zero-degradation (0× SD), BAU and 2× SD scenarios, respectively. Our results show that the present-day production capacity will not sustain the long-term needs of a growing population under the current management level. Technical countermeasures and policy interventions need to be enacted today in order to avoid food insecurity tomorrow.  相似文献   
955.
The United Nations Framework Convention on Climate Change (UNFCCC 1992) calls for stabilization of atmospheric greenhouse gas (GHG) concentrations at a level that would prevent dangerous anthropogenic interference with the climate system. We use three global energy system models to investigate the technological and economic attainability of meeting CO2 concentration targets below current levels. Our scenario studies reveal that while energy portfolios from a broad range of energy technologies are needed to attain low concentrations, negative emission technologies—e.g., biomass energy with carbon capture and storage (BECCS)—significantly enhances the possibility to meet low concentration targets (at around 350 ppm CO2).  相似文献   
956.
Recent and potential future increases in global temperatures are likely to be associated with impacts on the hydrologic cycle, including changes to precipitation and increases in extreme events such as droughts. We analyze changes in drought occurrence using soil moisture data for the SRES B1, A1B and A2 future climate scenarios relative to the PICNTRL pre-industrial control and 20C3M twentieth century simulations from eight AOGCMs that participated in the IPCC AR4. Comparison with observation forced land surface model estimates indicates that the models do reasonably well at replicating our best estimates of twentieth century, large scale drought occurrence, although the frequency of long-term (more than 12-month duration) droughts are over-estimated. Under the future projections, the models show decreases in soil moisture globally for all scenarios with a corresponding doubling of the spatial extent of severe soil moisture deficits and frequency of short-term (4–6-month duration) droughts from the mid-twentieth century to the end of the twenty-first. Long-term droughts become three times more common. Regionally, the Mediterranean, west African, central Asian and central American regions show large increases most notably for long-term frequencies as do mid-latitude North American regions but with larger variation between scenarios. In general, changes under the higher emission scenarios, A1B and A2 are the greatest, and despite following a reduced emissions pathway relative to the present day, the B1 scenario shows smaller but still substantial increases in drought, globally and for most regions. Increases in drought are driven primarily by reductions in precipitation with increased evaporation from higher temperatures modulating the changes. In some regions, increases in precipitation are offset by increased evaporation. Although the predicted future changes in drought occurrence are essentially monotonic increasing globally and in many regions, they are generally not statistically different from contemporary climate (as estimated from the 1961–1990 period of the 20C3M simulations) or natural variability (as estimated from the PICNTRL simulations) for multiple decades, in contrast to primary climate variables, such as global mean surface air temperature and precipitation. On the other hand, changes in annual and seasonal means of terrestrial hydrologic variables, such as evaporation and soil moisture, are essentially undetectable within the twenty-first century. Changes in the extremes of climate and their hydrological impacts may therefore be more detectable than changes in their means.  相似文献   
957.
The third algorithm intercomparison project (AIP-3) involved rain estimates from more than 50 satellite rainfall algorithms and ground radar measurements within the Intensive Flux Array (IFA) over the equatorial western Pacific warm pool region during the Tropical Ocean Global Atmosphere coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Early results indicated that there was a sys- tematic bias between rainrates from satellite passive microwave and ground radar measurements. The mean rainrate from radar measurements is about 50% underestimated compared to that from passive microwave-based retrieval algorithms. This paper is designed to analyze rain patterns from the Florida State University rain retrieval algorithm and radar measurements to understand physically the rain discrep- ancies. Results show that there is a clear range-dependent bias associated with the radar measurements. However, this range-dependent systematical bias is almost eliminated with the corrected radar rainrates. Results suggest that the effects from radar attenuation correction, calibration and beam filling are the major sources of rain discrepancies. This study demonstrates that rain retrievals based on satellite mea- surements from passive microwave radiometers such as the Special Sensor of Microwave Imager (SSM/I) are reliable, while rain estimates from ground radar measurements are correctable.  相似文献   
958.
959.
Cycloids, arcuate features observed on Europa’s surface, have been interpreted as tensile cracks that form in response to diurnal tidal stress caused by Europa’s orbital eccentricity. Stress from non-synchronous rotation may also contribute to tidal stress, and its influence on cycloid shapes has been investigated as well. Obliquity, fast precession, and physical libration would contribute to tidal stress but have often been neglected because they were expected to be negligibly small. However, more sophisticated analyses that include the influence of Jupiter’s other large satellites and the state of Europa’s interior indicate that perhaps these rotational parameters are large enough to alter the tidal stress field and the formation of tidally-driven fractures. We test tidal models that include obliquity, fast precession, stress due to non-synchronous rotation, and physical libration by comparing how well each model reproduces observed cycloids. To do this, we have designed and implemented an automated parameter-searching algorithm that relies on a quantitative measure of fit quality, which we use to identify the best fits to observed cycloids. We then apply statistical techniques to determine the tidal model best supported by the data. By incorporating obliquity, fits to observed southern hemisphere cycloids improve, and we can reproduce equatorial and equator-crossing cycloids. Furthermore, we find that obliquity plus physical libration is the tidal model best supported by the data. With this model, the obliquities range from 0.32° to 1.35°. The libration amplitudes are 0.72–2.44°, and the libration phases are −6.04° to 17.72° with one outlier at 84.5°. The variability in obliquity is expected if Europa’s ice shell is mechanically decoupled from the interior, and the libration amplitudes are plausible in the presence of a subsurface ocean. Indeed, the presence of a decoupling ocean may result in feedbacks that cause all of these rotational parameters to become time-variable.  相似文献   
960.
The basic functionality and performance of a new Schlumberger active wireline heave compensation system on the JOIDES Resolution was evaluated during the sea trial and a 3-year period of the IODP Phase II operations. A suite of software programs was developed to enable real-time monitoring of the dynamics of logging tools, and assess the efficiency of wireline heave compensation during downhole operations. The evaluation of the system effectiveness was performed under normal logging conditions as well as during stationary tests. Logging data were analyzed for their overall quality and repeatability, and to assess the reliability of high-resolution data such as formation microscanner (FMS) electrical images. This revealed that the system reduces 65–80 % of displacement or 88–98 % variance of downhole tool motion in stationary mode under heave conditions of ±0.2–1.5 m and water depths of 300–4,500 m in open holes. Under similar water/heave conditions, the compensator system reduces tool displacement by 50–60 %, or 75–84 % variance in downhole tool motion during normal logging operations. Such compensation efficiency (CE) is comparable to previous compensation systems, but using advanced and upgradeable technologies, and provides 50–85 % heave motion and heave variance attenuation. Moreover, logging down/up at low speeds (300–600 m/h) reduces the system’s CE values by 15–20 %, and logging down at higher speeds (1,000–1,200 m/h) eliminates CE values by 55–65 %. Considering the high quality of the logging data collected, it is concluded that the new system can provide an improved level of compensation over previous systems. Also, if practically feasible, future integration of downhole cable dynamics as an input feedback into the current system could further improve its compensation efficiency during logging operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号