首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1764篇
  免费   86篇
  国内免费   32篇
测绘学   41篇
大气科学   186篇
地球物理   407篇
地质学   642篇
海洋学   139篇
天文学   288篇
综合类   5篇
自然地理   174篇
  2023年   6篇
  2022年   9篇
  2021年   33篇
  2020年   35篇
  2019年   26篇
  2018年   54篇
  2017年   45篇
  2016年   77篇
  2015年   50篇
  2014年   72篇
  2013年   114篇
  2012年   57篇
  2011年   105篇
  2010年   87篇
  2009年   105篇
  2008年   91篇
  2007年   102篇
  2006年   101篇
  2005年   69篇
  2004年   66篇
  2003年   53篇
  2002年   55篇
  2001年   44篇
  2000年   33篇
  1999年   38篇
  1998年   30篇
  1997年   19篇
  1996年   20篇
  1995年   18篇
  1994年   14篇
  1993年   18篇
  1992年   9篇
  1991年   19篇
  1990年   16篇
  1989年   16篇
  1987年   13篇
  1986年   19篇
  1985年   9篇
  1984年   6篇
  1983年   16篇
  1982年   13篇
  1981年   14篇
  1980年   12篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   7篇
  1975年   8篇
  1974年   7篇
  1973年   6篇
排序方式: 共有1882条查询结果,搜索用时 875 毫秒
41.
Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper.  相似文献   
42.
This paper presents the experimental results of the mechanical production of silica and carbonate colloidal particles below 100 nm using two types of stirred bead mills (i.e., DCP Superflow 12 and PML H/V). It is shown that the stirred bead mill with very small beads can be used as an efficient equipment for the production of the colloidal particles in nanoscale from the feed materials of several microns in sizes at high energy consumptions. The DCP Superflow mill with high power densities is superior for the effective size reduction and production rate, compared to the conventional PML H/V mill with lower power densities. The smaller particles could be produced by the DCP Superflow mill at the same level of high energy inputs as from the PML H/V mill. The “grinding limit” for the processes in the mills has been discussed.  相似文献   
43.
44.
45.
Garnets from the Zermatt-Saas Fee eclogites contain narrow central peaks for Lu + Yb + Tm ± Er and at least one additional small peak towards the rim. The REE Sm + Eu + Gd + Tb ± Dy are depleted in the cores but show one prominent peak close to the rim. These patterns cannot be modeled using Rayleigh fractionation accompanied by mineral breakdown reactions. Instead, the patterns are well explained using a transient matrix diffusion model where REE uptake is limited by diffusion in the matrix surrounding the porphyroblast. Observed profiles are well matched if a roughly linear radius growth rate is used. The secondary peaks in the garnet profiles are interpreted to reflect thermally activated diffusion due to temperature increase during prograde metamorphism. The model predicts anomalously low 176Lu/177Hf and 147Sm/144Nd ratios in garnets where growth rates are fast compared to diffusion of the REE, and these results have important implications for Lu–Hf and Sm–Nd geochronology using garnet.  相似文献   
46.
Platinum-group element (PGE) mineralisation within the Platreef at Overysel is controlled by the presence of base metal sulphides (BMS). The floor rocks at Overysel are Archean basement gneisses, and unlike other localities along the strike of the Platreef where the floor is comprised of Transvaal Supergroup sediments, the intimate PGE–BMS relationship holds strong into the footwall rocks. Decoupling of PGE from BMS is rare and the BMS and platinum-group mineral assemblages in the Platreef and the footwall are almost identical. There is minimal overprinting by hydrothermal fluids; therefore, the mineralisation style present at Overysel may represent the most ‘primary’ style of Platreef mineralisation preserved anywhere along the strike. Chondrite-normalised PGE profiles reveal a progressive fractionation of the PGE with depth into the footwall, with Ir, Ru and Rh dramatically depleted with depth compared to Pt, Pd and Au. This feature is not observed at Sandsloot and Zwartfontein, to the south of Overysel, where the footwall rocks are carbonates. There is evidence from rare earth element abundances and the amount of interstitial quartz towards the base of the Platreef pyroxenites that contamination by a felsic melt derived from partial melting of the gneissic footwall has taken place. Textural evidence in the gneisses suggests that a sulphide liquid percolated down into the footwall through a permeable, inter-granular network that was produced by partial melting around grain boundaries in the gneisses that was induced by the intrusion of the Platreef magma. PGE were originally concentrated within a sulphide liquid in the Platreef magma, and the crystallisation of monosulphide solid solution from the sulphide liquid removed the majority of the IPGE and Rh from it whilst still within the mafic Platreef. Transport of PGE into the gneisses, via downward migration of the residual sulphide liquid, fractionated out the remaining IPGE and Rh in the upper parts of the gneisses leaving a ‘slick’ of disseminated sulphides in the gneiss, with the residual liquid becoming progressively more depleted in these elements relative to Pt, Pd and Au. Highly sulphide-rich zones with massive sulphides formed where ponding of the sulphide liquid occurred due to permeability contrasts in the footwall. This study highlights the fact that there is a fundamental floor rock control on the mechanism of distribution of PGE from the Platreef into the footwall rocks. Where the floor rocks are sediments, fluid activity related to metamorphism, assimilation and later serpentinisation has decoupled PGE from BMS in places, and transport of PGE into the footwall is via hydrothermal fluids. In contrast, where the floor is comprised of anhydrous gneiss, such as at Overysel, there is limited fluid activity and PGE behaviour is controlled by the behaviour of sulphide liquids, producing an intimate PGE–BMS association. Xenoliths and irregular bands of chromitite within the Platreef are described in detail for the first time. These are rich in the IPGE and Rh, and evidence from laurite inclusions indicates they must have crystallised from a PGE-saturated magma. The disturbed and xenolithic nature of the chromitites would suggest they are rip-up clasts, either disturbed by later pulses of Platreef magma in a multi-phase emplacement or transported into the Platreef from a pre-existing source in a deeper staging chamber or conduit.  相似文献   
47.
48.
Atmospheric dimethyl sulfide (DMS) and sulfur dioxide (SO2) concentrations were measured at Baring Head, New Zealandduring February and March 2000. Anti-correlated DMS and SO2 diurnalcycles, consistent with the photochemical production of SO2 from DMS, were observed in clean southerly air off the ocean. The data is used to infer a yield of SO2 from DMS oxidation. The estimated yields are highly dependent on assumptions about the DMS oxidation rate. Fitting the measured data in a photochemical box model using model-generated OH levels and the Hynes et al. (1986) DMS + OH rate constant suggests that theSO2 yield is 50–100%, similar to current estimates for the tropical Pacific.However, the observed amplitude of the DMS diurnal cycle suggests that the oxidation rate is higher than that used by the model, and therefore, that theSO2 yield is lower in the range of 20–40%.  相似文献   
49.
Analysis of a buried deposit in the Diamond Valley of southern California has revealed well-preserved pollen, wood, and diatom remains. Accelerator mass spectrometry dates of 41,200±2100 and 41,490±1380 14C yr B.P. place this deposit in marine isotope stage 3. Diatoms suggest a shallow lacustrine environment. Pollen data suggest that several plant communities were present near the site, with grassland, scrub, chaparral, forest, and riparian communities represented. Comparison with modern pollen suggests similarities with montane forests in the nearby San Bernardino and San Jacinto ranges, indicating vegetation lowering by at least 900 m elevation and temperatures 4°–5°C cooler than today. An increase in high-elevation conifer pollen documents climatic cooling near the profile top. Early-profile diatoms are typical of warm water with high alkalinity and conductivity, whereas later diatoms suggest a higher flow regime and input of cooler water into the system. We suggest that the sequence is part of the cooling phase of an interstadial Dansgaard–Oeschger cycle. Records of the middle Wisconsin period are rare in southern California, but the Diamond Valley site is similar to records from Tulare Lake in the San Joaquin Valley and the ODP Site 893A record from Santa Barbara Basin. It is probable that the Diamond Valley assemblage is a local expression of a vegetation type widespread in the ranges and basins of southwestern California during the middle Wisconsin.  相似文献   
50.
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号