首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1619篇
  免费   65篇
  国内免费   29篇
测绘学   39篇
大气科学   177篇
地球物理   360篇
地质学   597篇
海洋学   131篇
天文学   248篇
综合类   4篇
自然地理   157篇
  2023年   5篇
  2022年   9篇
  2021年   31篇
  2020年   33篇
  2019年   21篇
  2018年   48篇
  2017年   40篇
  2016年   74篇
  2015年   45篇
  2014年   65篇
  2013年   109篇
  2012年   54篇
  2011年   98篇
  2010年   83篇
  2009年   92篇
  2008年   90篇
  2007年   93篇
  2006年   93篇
  2005年   61篇
  2004年   63篇
  2003年   47篇
  2002年   47篇
  2001年   39篇
  2000年   31篇
  1999年   36篇
  1998年   23篇
  1997年   19篇
  1996年   19篇
  1995年   16篇
  1994年   12篇
  1993年   16篇
  1992年   7篇
  1991年   17篇
  1990年   15篇
  1989年   15篇
  1987年   13篇
  1986年   17篇
  1985年   8篇
  1984年   5篇
  1983年   14篇
  1982年   12篇
  1981年   14篇
  1980年   12篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   4篇
  1974年   7篇
  1973年   5篇
排序方式: 共有1713条查询结果,搜索用时 15 毫秒
991.
992.
The precise physical process that triggers solar flares is not currently understood. Here we attempt to capture the signature of this mechanism in solar-image data of various wavelengths and use these signatures to predict flaring activity. We do this by developing an algorithm that i) automatically generates features in 5.5 TB of image data taken by the Solar Dynamics Observatory of the solar photosphere, chromosphere, transition region, and corona during the time period between May 2010 and May 2014, ii) combines these features with other features based on flaring history and a physical understanding of putative flaring processes, and iii) classifies these features to predict whether a solar active region will flare within a time period of \(T\) hours, where \(T = 2 \mbox{ and }24\). Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We find that when optimizing for the True Skill Score (TSS), photospheric vector-magnetic-field data combined with flaring history yields the best performance, and when optimizing for the area under the precision–recall curve, all of the data are helpful. Our model performance yields a TSS of \(0.84 \pm0.03\) and \(0.81 \pm0.03\) in the \(T = 2\)- and 24-hour cases, respectively, and a value of \(0.13 \pm0.07\) and \(0.43 \pm0.08\) for the area under the precision–recall curve in the \(T=2\)- and 24-hour cases, respectively. These relatively high scores are competitive with previous attempts at solar prediction, but our different methodology and extreme care in task design and experimental setup provide an independent confirmation of these results. Given the similar values of algorithm performance across various types of models reported in the literature, we conclude that we can expect a certain baseline predictive capacity using these data. We believe that this is the first attempt to predict solar flares using photospheric vector-magnetic field data as well as multiple wavelengths of image data from the chromosphere, transition region, and corona, and it points the way towards greater data integration across diverse sources in future work.  相似文献   
993.
Ground-reflected global positioning system signals measured by a geodetic-quality GPS system can be used to infer temporal changes in near-surface soil moisture for the area surrounding the antenna. This technique, known as GPS-interferometric reflectometry, analyzes changes in the interference pattern of the direct and reflected signals, which are recorded in signal-to-noise ratio (SNR) data, as interferograms. Temporal fluctuations in the phase of the interferogram are indicative of changes in near-surface volumetric soil moisture content. However, SNR phase is also highly sensitive to changes in overlying vegetation, and thus, the effects of seasonal vegetation changes on the ground-reflected signal must be considered. Here a method is described for determining whether SNR data are significantly corrupted by vegetation and for correcting these effects. Absolute soil moisture content must be determined for each site using ancillary data for the residual moisture content. Accounting for vegetation effects significantly improves the agreement between GPS-derived soil moisture and in situ measurements.  相似文献   
994.
Do organic ligands affect calcite dissolution rates?   总被引:1,自引:0,他引:1  
Steady state Iceland-spar calcite dissolution rates were measured at 25 °C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA4−, succinate, d-glucosaminate, l-glutamate, d-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of <0.05 mol/kg of these organic anions changes calcite dissolution rates by less than a factor of 2.5 with the exception of citrate and EDTA4−. The presence of 0.05 mol/kg citrate and EDTA4− increases calcite dissolution rates by as much as a factor of 35 and 500, respectively, compared to rates in organic anion-free solutions. Further calcite dissolution experiments were performed in the presence of organic polymers similar to bacterial exudates, cell exopolysaccharides, and analogs of microbial cell envelopes: alginate, lichen extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.  相似文献   
995.
The objective of this study was to investigate the role of dissolved CO2 (H2CO3*) as a mechanism of cation removal from surface soils under secondary land uses in the tropics. Soil leachate columns were prepared with 0–10 cm soils from mature and secondary forest, and managed pastures, and extracted with H2CO3* from deionized water equilibrated with 0%, 0.5%, 1%, and 10% CO2 (g). Extraction of soil cations slowed over time following an exponential form for the cumulative data. The rate of cation concentration decline varied as a function of CO2 concentration with the 10% solution resulting in a greater percent decline with extraction volume. Potassium removal from the exchange sites of all soils and for all solutions was nearly complete ranging from 85% to 97% while removals of Mg (31% to 71%) and Ca (12% to 42%) were lower. The asymptotic patterns of cation loss observed in this study suggest that H2CO3* acid-driven losses of cations may become self-limiting over time. Other stronger acids from atmospheric deposition or organic sources may serve to perpetuate cation removal, and re-forestation on these cleared lands would certainly re-distribute cations from soils to vegetation.  相似文献   
996.
997.
Boundary-Layer Meteorology - We investigate the path-averaged visibility and discrimination of fog and rain events using a two-wavelength (near-infrared and microwave) scintillometer system. These...  相似文献   
998.
Lavas erupted at the southern end of the intermediate Juan de Fuca ridge (Cleft segment) are mostly cogenetic and their chemical diversity results from melt evolution in an open magma system. In the present study, we apply a theoretical model allowing the time evolution of this periodically recharged and tapped magma chamber to be estimated. In our mathematical procedure, the melt quantity supplied to the reservoir varies through time following a sinusoidal function. The rare earth element concentrations in the refilling melt were calculated on the basis of the REE distribution in lavas. This theoretical composition is akin to that previously estimated for a Mg#70 MORB from mineralogical and chemical data. Then, we approached the temporal evolution of the reservoir using a set of suitable parameters deduced from the geometry of the crust and magma system beneath the Cleft segment. Particularly, we considered two end-members scenarios for the melt repartition through the magma reservoir beneath the Cleft segment: the “gabbro glacier” model (crystal nucleation and growth occur within one single melt lens and crystals subside vertically and laterally) and the “sheeted sill” model (crystallization takes place within a network of connected sills located at various depths within the crust). We estimated that the magma chamber is refilled every thousand years and that the melt resides approximately one hundred years within the reservoir.  相似文献   
999.
We present a flux-limiting wetting–drying approach for finite-element discretizations of the shallow-water equations using discontinuous linear elements for the elevation. The key ingredient of the method is the use of limiters for generalized nodal fluxes. This method is implemented into the Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM), and is verified against standard test cases. The method is further applied to the wetting and drying of sand banks in the Scheldt Estuary, which is located in northern Belgium and the southern Netherlands. The results obtained for both the benchmarks and the realistic problem illustrate the accuracy of the method in describing the hydrodynamics in the vicinity of dry areas. In particular, the method strictly conserves mass, and there is no transport through dry areas.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号