首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   3篇
地球物理   5篇
地质学   15篇
自然地理   1篇
  2023年   2篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
This paper presents a model for local scour at submerged weirs with downstream slopes that uses a coupled moving-mesh and masked-element approach.In the developed model,the fluid-sediment interface is tracked using a moving-mesh technique,and the effects of the structure on the hydrodynamics and bed morphology are resolved using a masked-element technique.Compared to traditional sediment scour models,based on the moving-mesh technique,the present model has the advantage of allowing for a simpler setup of the computational grids and a larger-amplitude deformation.Laboratory experiments on local scour at a submerged weir with a downstream slope were conducted,which provided bed profiles at different time instants.The results obtained by the present model are compared to the experimental data.The comparisons demonstrate the performance of the model in satisfactorily predicting local scour at a submerged weir with a downstream slope.The model was further modified and employed to carry out additional computations to investigate the influence of various parameters and sub-models.  相似文献   
12.
Canonical balanced dynamic equations involving vertically sheared horizontal flow with heat or mass sources have emerged recently in systematic multi-scale modeling of the equatorial wave guide on a wide range of spatio-temporal scales. Here, a new self-contained derivation of these equations is developed briefly in a context for potential applications to the hurricane embryo. These canonical balanced equations are studied through a combination of exact solutions and simple numerics. The results below include elementary exact solutions given by velocity fields that are linear in the spatial coordinates combined with an exact nonlinear stability analysis for vertical vorticity amplification in such a preconditioned environment. Other elementary solutions studied here include the evolution of radial eddies, which represent “hot towers” in the hurricane embryo in a suitable radial preconditioned background environment.  相似文献   
13.
The Sanandaj–Sirjan Zone (SSZ), as the metamorphic-magmatic core of the Zagros Orogen in southwestern Iran, contains several styles of gold deposit of Phanerozoic age. The northern SSZ includes an ENE-trending goldfield belt. This area that encompasses the main orogenic gold deposits, e.g., Qolqoleh, Kervian, Qabaqhlujeh, and the Barika VMS goldfield, was chosen for this research to study the spatial and temporal relationships between gold mineralization and orogenic phases. Regarding the rock unit variations, metamorphism, magmatism and the settings of the structures, the study area is divided into four distinct tectonic blocks, separated by three main NW-trending thrust faults (suture lines) including, from NE to SW, the Tamugheh, the Ebrahim Hesar and the Zagros main thrust (ZMT) faults. The area between the Tamugheh and Ebrahim Hesar faults is a tectonized/uplifted basement of accretionary wedge-originated thrust slivers, hosting the above orogenic gold mineralizations. The other area between the here termed Ebrahim Hesar fault and the ZMT is an island-arc basin, proposed here as the Sardasht–Barika zone, including the only recognized massive sulfide gold district all over the SSZ, named Barika. The Barika goldfield was metamorphosed, deformed and enriched due to the island-arc collision to the Arabian continent, before the closure of Neotethys on the eastern flank.  相似文献   
14.

In this paper, a multiphase three-dimensional numerical reproduction of a large-scale laboratory experiment of tsunami-like bore interaction with a surface-piercing circular column is presented. The numerical simulation is conducted using OpenFOAM. A dam-break mechanism is implemented in order to generate tsunami-like bores. The numerical model is validated using the results of experiments performed at the Canadian Hydraulics Center of the National Research Council in Ottawa, Canada. Unsteady Reynolds-Averaged Navier–Stokes equations are used in order to treat the turbulence effects. The Shear Stress Transport kω turbulence model showed a high level of accuracy in replicating the bore–structure interactions. A scaled-up domain is used to investigate the influence of bed condition in terms of various downstream depths and roughnesses. Finally, a broad investigation on bore propagation characteristics is performed. The stream-wise forces exerted on the structural column as well as the bore velocity are compared and analyzed for smooth, rough, dry and wet beds with varying depths.

  相似文献   
15.

In this paper effect of fine mineralogy on mechanical behavior of unsaturated silty sand in different fine contents and divers confining pressure has been studied. All samples were molded with constant equivalent granular void ratio well-known parameter already proposed for characterizing silty sand behavior in saturated state. This manner of study allow to investigate also the validity of equivalent granular void ratio concept in unsaturated state. For this purpose, a series of triaxial tests were performed on the sand specimens with different percentages of silt in the undrained saturated (CU) and unsaturated (CW) conditions. The results showed that the material types and aggregate distribution of the fines have enormous effects on the silty sand behavior. In addition, the shear strength in the unsaturated specimens changed as a function of the initial applied matric suction. A fewer performance of equivalent intergranular void ratio in the case of unsaturated state in comparison of saturated states was observed.

  相似文献   
16.
人类活动造成的CO2排放是全球气候变暖面临的主要挑战之一。CO2封存有望成为全世界减少碳排放份额最大的单项技术。海洋碳捕获、利用和封存(OCCUS)可以在较短时间内提供最大的碳封存能力,与其他地质封存方法相比更加安全有效。而且,多相态形式的CO2(气态、液态、固态和水合物)可以在海洋纵深尺度上实现直接注入。海洋碳封存是一项发展潜力巨大、优势明显的新兴碳封存技术,是实现大规模碳减排的重要措施之一,具有广阔的应用前景。因此,笔者等系统地阐述了海洋CO2直接注入、封存(OCS)的基本原理、技术现状、监测与评估,以及环境方面的影响,并对高效CO2注入技术,CO2泄漏的检测、防范与补救技术,以及海洋碳封存的生态后效等方面进行了展望。  相似文献   
17.
人类活动造成的CO2排放是全球气候变暖面临的主要挑战之一。CO2封存有望成为全世界减少碳排放份额最大的单项技术。海洋碳捕获、利用和封存(OCCUS)可以在较短时间内提供最大的碳封存能力,与其他地质封存方法相比更加安全有效。而且,多相态形式的CO2(气态、液态、固态和水合物)可以在海洋纵深尺度上实现直接注入。海洋碳封存是一项发展潜力巨大、优势明显的新兴碳封存技术,是实现大规模碳减排的重要措施之一,具有广阔的应用前景。因此,笔者等系统地阐述了海洋CO2直接注入、封存(OCS)的基本原理、技术现状、监测与评估,以及环境方面的影响,并对高效CO2注入技术,CO2泄漏的检测、防范与补救技术,以及海洋碳封存的生态后效等方面进行了展望。  相似文献   
18.
With the increasing demand for discrete element simulations with larger number of particles and more realistic particle geometries, the need for efficient contact detection algorithms is more evident. To date, the class of common plane (CP) methods is among the most effective and widely used contact detection algorithms in discrete element simulations of polygonal and polyhedral particles. This paper introduces a new approach to obtain the CP by employing a newly introduced concept of ‘shortest link’. Among all the possible line segments that connect any point on the surface of particle A to any point on the surface of particle B, the one with the shortest length defines the shortest link between the two particles. The perpendicular bisector plane of the shortest link fulfils all the conditions of a CP, suggesting that CP can be obtained by seeking the shortest link. A new algorithm, called shortest link method (SLM), is proposed to obtain the shortest link and subsequently the CP between any two polyhedral particles. Comparison of the analysis time between SLM and previously introduced algorithms demonstrate that SLM results in a substantial speed up for polyhedral particles contact detection. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
19.
The evolution of the microstructure of an assembly of cohesionless granular materials with associated pores, which carry the overall applied stresses through frictional contacts is a complex phenomenon. The macroscopic flow of such materials take place by the virtue of the relative rolling and sliding of the grains on the micro‐scale. A new discrete element method for biaxial compression simulations of random assemblies of oval particles with mixed sizes is introduced. During the course of deformation, the new positions of the grains are determined by employing the static equilibrium equations. A key aspect of the method is that, it is formulated for ellipse cross‐sectional particles, hence desirable inherent anisotropies are possible. A robust algorithm for the determination of the contact points between neighbouring grains is given. Employing the present methodology, many aspects of the behaviour of two‐dimensional assemblies of oval cross‐sectional rods have been successfully addressed. The effects of initial void ratio, interparticle friction angle, aspect ratio, and bedding angle on the rolling and sliding contacts are examined. The distribution of normals to the rolling and sliding contacts have different patterns and are concentrated along directions, which are approximately perpendicular to one another. On the other hand, the distribution of all contact normals (combined rolling and sliding) are close to that of rolling contacts, which confirm that rolling is the dominant mechanism. This phenomenon becomes more pronounced for higher intergranular friction angle. Characteristics of the rolling and sliding contacts are also discussed in the context of the force angle, which is the inclination of contact force with respect to the contact normal. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号