首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   6篇
大气科学   2篇
地球物理   9篇
地质学   41篇
海洋学   7篇
天文学   3篇
自然地理   3篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   7篇
  2009年   6篇
  2008年   5篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1989年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
51.
The response of the climate at high northern latitudes to slowly changing external forcings was studied in a 9,000-year long simulation with the coupled atmosphere-sea ice-ocean-vegetation model ECBilt-CLIO-VECODE. Only long-term changes in insolation and atmospheric CO2 and CH4 content were prescribed. The experiment reveals an early optimum (9–8 kyr BP) in most regions, followed by a 1–3°C decrease in mean annual temperatures, a reduction in summer precipitation and an expansion of sea-ice cover. These results are in general agreement with proxy data. Over the continents, the timing of the largest temperature response in summer coincides with the maximum insolation difference, while over the oceans, the maximum response is delayed by a few months due to the thermal inertia of the oceans, placing the strongest cooling in the winter half year. Sea ice is involved in two positive feedbacks (ice-albedo and sea-ice insulation) that lead regionally to an amplification of the thermal response in our model (7°C cooling in Canadian Arctic). In some areas, the tundra-taiga feedback results in intensified cooling during summer, most notably in northern North America. The simulated sea-ice expansion leads in the Nordic Seas to less deep convection and local weakening of the overturning circulation, producing a maximum winter temperature reduction of 7°C. The enhanced interaction between sea ice and deep convection is accompanied by increasing interannual variability, including two marked decadal-scale cooling events. Deep convection intensifies in the Labrador Sea, keeping the overall strength of the thermohaline circulation stable throughout the experiment.  相似文献   
52.
In this study, the accuracy and the precision corresponding to Li isotopic measurements of low level samples such as marine and coastal carbonates are estimated. To this end, a total of fifty‐four analyses of a Li‐pure reference material (Li7‐N) at concentrations ranging from 1 to 6 ng ml?1 were first performed. The average δ7Li values obtained for solutions with and without chemical purification were 30.3 ± 0.4‰ (2s,= 19) and 30.2 ± 0.4‰ (2s,= 36), respectively. These results show that the chosen Li chemical extraction and purification procedure did not induce any significant isotope bias. Two available carbonate reference materials (JCt‐1 and JCp‐1) were analysed, yielding mean δ7Li values of 18.0 ± 0.27‰ (2s,= 6) and 18.8 ± 1.8‰ (2s,= 9), respectively. Small powder aliquots (< 15 mg) of JCp‐1 displayed significant isotope heterogeneity and we therefore advise favouring JCt‐1 for interlaboratory comparisons. The second part of this study concerns the determination of δ7Li value for biogenic carbonate samples. We performed a total of twenty‐nine analyses of seven different tropical coral species grown under controlled and similar conditions (24.0 ± 0.1 °C). Our sample treatment prior to Li extraction involved removal of organic matter before complete dissolution in diluted HCl. Our results show (a) a constant δ7Li within each skeleton and between the different species (δ7Li = 17.3 ± 0.7‰), and (b) a Li isotope fractionation of ?2‰ compared with inorganic aragonite grown under similar conditions. Comparison with literature data suggests a significant difference between samples living in aquaria and those grown in natural conditions. Finally, we investigate ancient (fossil) carbonate material and foraminifera extracted from marine sedimentary records. Different leaching procedures were tested using various HCl molarities. Results indicate that carbonate preferential dissolution must be carried out at an acid molarity < 0.18 mol l?1. Possible contamination from silicate minerals can be verified using the Al/Ca ratio, but the threshold value strongly depends on the carbonate δ7Li value. When the silicate/carbonate ratio is high in the sediment sample (typically > 2), contamination from silicates cannot be avoided, even at low HCl molarity (? 0.1 mol l?1). Finally, bulk carbonate and foraminifera extracted from the same core sample exhibited significant discrepancies: δ7Li values of foraminifera were more reproducible but were significantly lower. They were also associated with lower Sr/Ca and higher Mn/Ca ratios, suggesting a higher sensitivity to diagenesis, although specific vital effects cannot be fully ruled out.  相似文献   
53.
The Lower Triassic Mineral Mountains area (Utah, USA) preserves diversified Smithian and Spathian reefs and bioaccumulations that contain fenestral‐microbialites and various benthic and pelagic organisms. Ecological and environmental changes during the Early Triassic are commonly assumed to be associated with numerous perturbations (productivity changes, acidifica‐tion, redox changes, hypercapnia, eustatism and temperature changes) post‐dating the Permian–Triassic mass extinction. New data acquired in the Mineral Mountains sediments provide evidence to decipher the relationships between depositional environments and the growth and distribution of microbial structures. These data also help to understand better the controlling factors acting upon sedimentation and community turnovers through the Smithian–early Spathian. The studied section records a large‐scale depositional sequence during the Dienerian(?)–Spathian interval. During the transgression, depositional environments evolved from a coastal bay with continental deposits to intertidal fenestral–microbial limestones, shallow subtidal marine sponge–microbial reefs to deep subtidal mud‐dominated limestones. Storm‐induced deposits, microbialite–sponge reefs and shallow subtidal deposits indicate the regression. Three microbialite associations occur in ascending order: (i) a red beds microbialite association deposited in low‐energy hypersaline supratidal conditions where microbialites consist of microbial mats and poorly preserved microbially induced sedimentary structure; (ii) a Smithian microbialite association formed in moderate to high‐energy, tidal conditions where microbialites include stromatolites and associated carbonate grains (oncoids, ooids and peloids); and (iii) a Spathian microbialite association developed in low‐energy offshore conditions that is preserved as multiple decimetre thick isolated domes and coalescent domes. Data indicate that the morphologies of the three microbialite associations are controlled primarily by accommodation, hydrodynamics, bathymetry and grain supply. This study suggests that microbial constructions are controlled by changes between trapping and binding versus precipitation processes in variable hydrodynamic conditions. Due to the presence of numerous metazoans associated with microbialites throughout the Smithian increase in accommodation and Spathian decrease in accommodation, the commonly assumed anachronistic character of the Early Triassic microbialites and the traditional view of prolonged deleterious conditions during the Early Triassic time interval is questioned.  相似文献   
54.
The present study compares the dissolution rates of plagioclase, microcline and biotite/chlorite from a bulk granite to the dissolution rates of the same minerals in mineral-rich fractions that were separated from the granite sample. The dissolution rate of plagioclase is enhanced with time as a result of exposure of its surface sites due to the removal of an iron oxide coating. Removal of the iron coating was slower in the experiment with the bulk granite than in the mineral-rich fractions due to a higher Fe concentration from biotite dissolution. As a result, the increase in plagioclase dissolution rate was initially slower in the experiment with the bulk granite. The measured steady state dissolution rates of both plagioclase (6.2 ± 1.2 × 10−11 mol g−1 s−1) and microcline (1.6 ± 0.3 × 10−11 mol g−1 s−1) were the same in experiments conducted with the plagioclase-rich fraction, the alkali feldspar-rich fraction and the bulk granite.Based on the observed release rates of the major elements, we suggest that the biotite/chlorite-rich fraction dissolved non-congruently under near-equilibrium conditions. In contrast, the biotite and chlorite within the bulk granite sample dissolved congruently under far from equilibrium conditions. These differences result from variations in the degree of saturation of the solutions with respect to both the dissolving biotite/chlorite and to nontronite, which probably was precipitating during dissolution of the biotite and chlorite-rich fraction. Following drying of the bulk granite, the dissolution rate of biotite was significantly enhanced, whereas the dissolution rate of plagioclase decreased.The presence of coatings, wetting and drying cycles and near equilibrium conditions all significantly affect mineral dissolution rates in the field in comparison to the dissolution rate of fully wetted clean minerals under far from equilibrium laboratory conditions. To bridge the gap between the field and the laboratory mineral dissolution rates, these effects on dissolution rate should be further studied.  相似文献   
55.
How the Messinian Salinity Crisis (MSC) ended is still a matter of intense debate. The Terminal Carbonate Complex (TCC) is a late Messinian carbonate platform system that recorded western Mediterranean hydrological changes from the final stages of evaporite deposition till the advent of Lago-Mare fresh- to brackish water conditions at the very end of Messinian times. A multidisciplinary study has been carried out in three localities in south-eastern Spain to reconstruct the history of TCC platforms and elucidate their significance in the MSC. Overall, this study provides evidence that the TCC formed following a regional 4th order water level rise and fall concomitant with an opening-restriction trend. It can be subdivided into four 5th order depositional sequences (DS1 to DS4) recording two phases: (1) from DS1 to DS3, a tide-dominated ooidic to oobioclastic system with stenohaline faunas developed as a result of a 70 m water level rise. During this period, the TCC developed in a shallow sea with close to normal marine salinity; (2) in depositional sequence 4, a microbialite-dominated platform system developed. This is indicative of a significant environmental change and is attributed to a 30 to 40 m water level fall in the basins under study. These restricted conditions were coeval with intense evaporite deformation and brine recycling. The syn-sedimentary deformation of evaporites had a major impact on platform architecture and carbonate production, affecting the Messinian series throughout south-eastern Spain at the end of the TCC history. At that time, the TCC developed in a lake with fluctuating, brackish- to hypersaline water. These findings suggest a temporary restoration of marine conditions in the western Mediterranean marginal basins due to Atlantic water influxes prompted by a global sea level rise around 5.6 Ma. Whether marine conditions extended to the entire western Mediterranean still needs to be investigated.  相似文献   
56.
The redox properties of FeII adsorbed onto a series of FeIII (oxyhydr)oxides (goethite, lepidocrocite, nano-sized ferric oxide hydrate (nano-FOH), and hydrous ferric oxide (HFO)) have been investigated by rest potential measurements at a platinum electrode, as a function of pH (−log10[H+]) and surface coverage. Using the constant capacitance surface complexation model to describe FeII adsorption onto these substrates, theoretical values of the suspension redox potential (EH) have been computed, under the assumption that FeII adsorption occurs at crystal growth sites of the substrate surface. Good agreement between calculated and experimental EH values is observed for nano-FOH and HFO, however the redox potentials measured for lepidocrocite and goethite are significantly more oxidizing than predicted. Mössbauer spectroscopic analysis of 57FeII adsorbed onto HFO and goethite shows that in both cases the adsorbed 57FeII is incorporated into the crystal structure of the substrate, in broad agreement with the thermodynamic model, but is almost completely oxidized to 57FeIII. The mechanism by which the adsorbed 57FeII is oxidized is not resolved in this work, but is thought to be due to electron transfer to the substrate, rather than a net oxidation of the suspension. The disagreement between experimental and calculated rest potential measurements in the goethite and lepidocrocite systems is thought to be due to the poor electrochemical equilibration of these suspensions with the platinum electrode, rather than a failure of the thermodynamic model. The model developed for the redox potential of adsorbed FeII allows direct assessment of the reactivity of this species towards oxidized pollutants.  相似文献   
57.
Two sampling cruises conducted in the Seine estuary (France) under low-water and flood conditions produced high resolution profiles for dissolved cadmium, lead, copper, zinc and nickel concentrations versus salinity. The distribution of dissolved trace metals differed depending on hydrologic conditions, partly because of the dilution of upstream inputs during flood periods. Daily fluxes of these dissolved trace metals were estimated for the two sampling periods (September 1994 and February 1995) by extrapolating the dilution lines observed in higher salinity waters to salinity=0 and then multiplying the effective freshwater concentrations thus obtained by the corresponding freshwater flow. Several procedures were subsequently applied to deduce each daily flux for the year studied from data for these two periods. A consensus was found among these procedures, allowing the determination of net fluxes of dissolved trace metals with a precision of 20–35%. The net fluxes thus estimated were 4 T yr−1 for Cd, 4 T yr−1 for Pb, 40 T yr−1 for Cu, 130 T yr−1 for Zn and 50 T yr−1 for Ni.  相似文献   
58.
The estimation of the seismological parameters of historical earthquakes is a key step when performing seismic hazard assessment in moderate seismicity regions as France. We propose an original method to assess magnitude and depth of historical earthquakes using intensity data points. A flowchart based on an exploration tree (ET) approach allows to apply a consistent methodology to all the different configurations of the earthquake macroseismic field and to explore the inherent uncertainties. The method is applied to French test case historical earthquakes, using the SisFrance (BRGM, IRSN, EDF) macroseismic database and the intensity prediction equations (IPEs) calibrated in the companion paper (Baumont et al. Bull Earthq Eng, 2017). A weighted least square scheme allowing for the joint inversion of magnitude and depth is applied to earthquakes that exhibit a decay of intensity with distance. Two cases are distinguished: (1) a “Complete ET” is applied to earthquakes located within the metropolitan territory, while (2) a “Simplified ET” is applied to both, offshore and cross border events, lacking information at short distances but disposing of reliable data at large ones. Finally, a priori-depth-based magnitude computation is applied to ancient or poorly documented events, only described by single/sporadic intensity data or few macroseismic testimonies. Specific processing of “felt” testimonies allows exploiting this complementary information for poorly described earthquakes. Uncertainties associated to magnitude and depth estimates result from both, full propagation of uncertainties related to the original macroseismic information and the epistemic uncertainty related to the IPEs selection procedure.  相似文献   
59.
Melting icebergs are a mobile source of fresh water as well as a sink of latent heat. In most global climate models, the spatio-temporal redistribution of fresh water and latent heat fluxes related to icebergs is parameterized by an instantaneous more or less arbitrary flux distribution over some parts of the oceans. It is uncertain if such a parameterization provides a realistic representation of the role of icebergs in the coupled climate system. However, icebergs could have a significant climate role, in particular during past abrupt climate change events which have been associated with armada’s of icebergs. We therefore present the interactive coupling of a global climate model to a dynamic thermodynamic iceberg model, leading to a more plausible spatio-temporal redistribution of fresh water and heat fluxes. We show first that our model is able to reproduce a reasonable iceberg distribution in both hemispheres when compared to recent data. Second, in a series of sensitivity experiments we explore cooling and freshening effects of dynamical icebergs on the upper Southern Ocean and we compare these dynamic iceberg results to the effects of an equivalent parameterized iceberg flux.In our model without interactive icebergs, the parameterized fluxes are distributed homogeneously South of 55°S, whereas dynamic icebergs are found to be concentrated closer to shore except for a plume of icebergs floating North–East from the tip of the Antarctic Peninsula. Compared to homogeneous fluxes, the dynamic icebergs lead to a 10% greater net production of Antarctic bottom water (AABW). This increased bottom water production involves open ocean convection, which is enhanced by a less efficient stratification of the ocean when comparing to a homogeneous flux distribution.Icebergs facilitate the formation of sea-ice. In the sensitivity experiments, both the fresh water and the cooling flux lead to a significant increase in sea-ice area of 12% and 6%, respectively, directly affecting the highly coupled and interactive air/sea/ice system. The consequences are most pronounced along the sea-ice edge, where this sea-ice facilitation has the greatest potential to affect ocean stratification, for example by heat insulation and wind shielding, which further amplifies the cooling and freshening of the surface waters.  相似文献   
60.
Clastic mud beds rich in continental organic matter are observed recurrently in the Nile deep-sea turbidite system. They formed during flooding periods of the river similar to those that induce sapropel formation and occurred during periods of increased density stratification of the eastern Mediterranean. The very fine-grained flood deposits are intercalated within pelagic sediments, sapropels and Bouma-type turbidites. These flood deposits form by the successive reconcentrations of surface (hypopycnal) plumes by convective sedimentation, which in turn generate a fine-grained low-energy hyperpycnal flow. Sea-level high stands seem also to favor hypopycnal plume formation and increase clastic mud bed formation. Consequently, these muddy clastic beds provide a direct link between deep-marine sedimentary records and continental climatic change through flood frequency and magnitude.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号