首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4410篇
  免费   1059篇
  国内免费   35篇
测绘学   95篇
大气科学   159篇
地球物理   2270篇
地质学   1724篇
海洋学   305篇
天文学   652篇
综合类   5篇
自然地理   294篇
  2024年   3篇
  2023年   7篇
  2022年   33篇
  2021年   71篇
  2020年   94篇
  2019年   228篇
  2018年   249篇
  2017年   328篇
  2016年   396篇
  2015年   382篇
  2014年   423篇
  2013年   485篇
  2012年   357篇
  2011年   351篇
  2010年   310篇
  2009年   228篇
  2008年   266篇
  2007年   196篇
  2006年   161篇
  2005年   149篇
  2004年   143篇
  2003年   142篇
  2002年   130篇
  2001年   119篇
  2000年   104篇
  1999年   26篇
  1998年   13篇
  1997年   13篇
  1996年   7篇
  1995年   16篇
  1994年   7篇
  1993年   4篇
  1992年   6篇
  1991年   2篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   9篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1958年   1篇
排序方式: 共有5504条查询结果,搜索用时 15 毫秒
61.
62.
The Water Framework Directive (WFD) 2000/60/EC, adopted by the European Community in 2000 with the goal of maintaining and improving the aquatic environments, requires that member states achieve and maintain a good ecological status of all water bodies by 2015. In the marine context, the ecological status has to be quantified applying indexes based on appropriate key biological elements, which allow the categorization of water bodies into five Ecological Status (ES) classes. The CARLIT index is a cartographic monitoring tool enabling the Ecological Quality Ratio (EQR) to be calculated using macroalgae in coastal hard bottoms as a key biological element; at present it is being applied in Spain, France and Italy. To detect actual changes of water quality and, consequently, rely on the application of indexes for the assessment of the ecological status in the marine environment, it is necessary to evaluate their sensitivity to natural variability at different temporal and spatial scales. In this study we present a first quantification of natural (spatial and temporal) variability of EQR‐CARLIT quality assessment in 2006 and 2007 along the Ligurian coast (North‐Western Mediterranean, Italy). The EQR‐CARLIT values recorded along the Ligurian coastline show that natural variability of EQR‐CARLIT is low and that it does not affect the attribution of a given stretch of coast to a particular ES class, in agreement with the major human pressures acting in the area (urbanization, river load, sea‐farming). A small‐scale variability was detected, strengthening the use of cartography of the whole rocky shore, whenever possible, or, alternatively, the assessment of the ecological status for long stretches of coast, to encompass the small‐scale variability due to local factors.  相似文献   
63.
64.
The soil factor is crucial in controlling and properly modeling the initiation and development of ephemeral gullies (EGs). Usually, EG initiation has been related to various soil properties (i.e. sealing, critical shear stress, moisture, texture, etc.); meanwhile, the total growth of each EG (erosion rate) has been linked with proper soil erodibility. But, despite the studies to determine the influence of soil erodibility on (ephemeral) gully erosion, a universal approach is still lacking. This is due to the complex relationship and interactions between soil properties and the erosive process. A feasible soil characterization of EG erosion prediction on a large scale should be based on simple, quick and inexpensive tests to perform. The objective of this study was to identify and assess the soil properties – easily and quickly to determine – which best reflect soil erodibility on EG erosion. Forty‐nine different physical–chemical soil properties that may participate in establishing soil erodibility were determined on agricultural soils affected by the formation of EGs in Spain and Italy. Experiments were conducted in the laboratory and in the field (in the vicinity of the erosion paths). Because of its importance in controlling EG erosion, five variables related to antecedent moisture prior to the event that generated the gullies and two properties related to landscape topography were obtained for each situation. The most relevant variables were detected using multivariate analysis. The results defined 13 key variables: water content before the initiation of EGs, organic matter content, cation exchange capacity, relative sealing index, two granulometric and organic matter indices, seal permeability, aggregates stability (three index), crust penetration resistance, shear strength and an erodibility index obtained from the Jet Test erosion apparatus. The latter is proposed as a useful technique to evaluate and predict soil loss caused by EG erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
65.
Sediments produced by landslides are crucial in the sediment yield of a catchment, debris flow forecasting, and related hazard assessment. On a regional scale, however, it is difficult and time consuming to measure the volumes of such sediment. This paper uses a LiDAR‐derived digital terrain model (DTM) taken in 2005 and 2010 (at 2 m resolution) to accurately obtain landslide‐induced sediment volumes that resulted from a single catastrophic typhoon event in a heavily forested mountainous area of Taiwan. The landslides induced by Typhoon Morakot are mapped by comparison of 25 cm resolution aerial photographs taken before and after the typhoon in an 83.6 km2 study area. Each landslide volume is calculated by subtraction of the 2005 DTM from the 2010 DTM, and the scaling relationship between landslide area and its volume are further regressed. The relationship between volume and area are also determined for all the disturbed areas (VL = 0.452AL1.242) and for the crown areas of the landslides (VL = 2.510AL1.206). The uncertainty in estimated volume caused by use of the LiDAR DTMs is discussed, and the error in absolute volume estimation for landslides with an area >105 m2 is within 20%. The volume–area relationship obtained in this study is also validated in 11 small to medium‐sized catchments located outside the study area, and there is good agreement between the calculation from DTMs and the regression formula. By comparison of debris volumes estimated in this study with previous work, it is found that a wider volume variation exists that is directly proportional to the landslide area, especially under a higher scaling exponent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
66.
Historical trends in Florida temperature and precipitation   总被引:1,自引:0,他引:1  
Because of its low topographic relief, unique hydrology, and the large interannual variability of precipitation, Florida is especially vulnerable to climate change. In this paper, we investigate a comprehensive collection of climate metrics to study historical trends in both averages and extremes of precipitation and temperature in the state. The data investigated consist of long‐term records (1892–2008) of precipitation and raw (unadjusted) temperature at 32 stations distributed throughout the state. To evaluate trends in climate metrics, we use an iterative pre‐whitening method, which aims to separate positive autocorrelation from trend present in time series. Results show a general decrease in wet season precipitation, most evident for the month of May and possibly tied to a delayed onset of the wet season. In contrast, there seems to be an increase in the number of wet days during the dry season, especially during November through January. We found that the number of dog days (above 26.7 °C) during the year and during the wet season has increased at many locations. For the post‐1950 period, a widespread decrease in the daily temperature range (DTR) is observed mainly because of increased daily minimum temperature (Tmin). Although we did not attempt to formally attribute these trends to natural versus anthropogenic causes, we find that the urban heat island effect is at least partially responsible for the increase in Tmin and its corresponding decrease in DTR at urbanized stations compared with nearby rural stations. In the future, a formal trend attribution study should be conducted for the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
67.
Special concentrically braced frames (SCBFs) are commonly used for seismic design of buildings. Their large elastic stiffness and strength efficiently sustains the seismic demands during smaller, more frequent earthquakes. During large, infrequent earthquakes, SCBFs exhibit highly nonlinear behavior due to brace buckling and yielding and the inelastic behavior induced by secondary deformation of the framing system. These response modes reduce the system demands relative to an elastic system without supplemental damping using a response modification coefficient, commonly termed the R factor. More recently, procedures put forth in FEMAP695 have been made to quantify the R factor through a formalized procedure that accounts for collapse potential. The primary objective of the research in this paper was to evaluate the approach for SCBFs. An improved model for SCBFs that permits simulation of brace fracture was used to conduct response history analyses. A series of three‐story, nine‐story and 20‐story SCBFs were designed and evaluated. Initially, the FEMAP695 method was conducted to estimate collapse and the corresponding R factor. An alternate procedure for scaling the multiple acceleration records to the seismic design hazard was also evaluated. The results show significant variation between the two methods. Of the three variations of buildings studied, the largest vulnerability was identified for the three‐story building. To achieve a consistent margin of safety against collapse, a significantly lower R factor is required for the low‐rise SCBFs (three‐story), whereas the mid‐rise and high‐rise SCBFs (nine‐story and 20‐story) may continue to use the current value of 6, as provided in ASCE‐07. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
68.
The purpose of this study was to quantify relationships between season, sediment availability, sediment transport pathways, and beach/foredune morphology at Greenwich Dunes, PEI. This was done for periods ranging from a few days to multiple decades using erosion pins, bedframe measurements, annual surveys, and digital photogrammetry using historical aerial photographs. The relative significance of seasonal/annual processes versus response of the foredune system to broader geomorphic controls (e.g. relative sea level rise, storms, etc.) was also assessed. The data show that there are clear seasonal differences in the patterns of sand supply from the beach to the foredune at Greenwich and that there are differences in sediment supply to the foredune between the east and west reaches of the study area, resulting in ongoing differences in foredune morphology. They also demonstrate that models that incorporate wind climate alone, or even models that include other factors like beach moisture, would not be able to predict the amount of sediment movement from the beach to the foredune in this environment unless there were some way to parameterize system morphology, especially the presence or absence of a dune ramp. Finally, the data suggest that the foredune can migrate landward while maintaining its form via transfers of sediment from the stoss slope, over the crest, and onto the lee slope. Although the rate of foredune development or recovery after disturbance changes over time due to morphological feedback, the overall decadal evolution of the foredune system at Greenwich is consistent with, and supports, the Davidson‐Arnott (2005) conceptual model of dune transgression under rising sea level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
69.
This paper deals with the estimation of peak inelastic displacements of SDOF systems, representative of typical steel structures, under constant relative strength scenarios. Mean inelastic deformation demands on bilinear systems (simulating moment resisting frames) are considered as the basis for comparative purposes. Additional SDOF models representing partially‐restrained and concentrically‐braced (CB) frames are introduced and employed to assess the influence of different force‐displacement relationships on peak inelastic displacement ratios. The studies presented in this paper illustrate that the ratio between the overall yield strength and the strength during pinching intervals is the main factor governing the inelastic deformations of partially‐restrained models and leading to significant differences when compared with predictions based on bilinear structures, especially in the short‐period range. It is also shown that the response of CB systems can differ significantly from other pinching models when subjected to low or moderate levels of seismic demand, highlighting the necessity of employing dedicated models for studying the response of CB structures. Particular attention is also given to the influence of a number of scalar parameters that characterise the frequency content of the ground motion on the estimated peak displacement ratios. The relative merits of using the average spectral period Taver, mean period Tm, predominant period Tg, characteristic period Tc and smoothed spectral predominant period To of the earthquake ground motion, are assessed. This paper demonstrates that the predominant period, defined as the period at which the input energy is maximum throughout the period range, is the most suitable frequency content scalar parameter for reducing the variability in displacement estimations. Finally, noniterative equivalent linearisation expressions based on the secant period and equivalent damping ratios are presented and verified for the prediction of peak deformation demands in steel structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
70.
This paper presents the preliminary research works on a potential seismic isolation method that makes use of scrap rubber tires for the protection of low‐to‐medium‐rise buildings. The method involves mixing shredded rubber tire particles with soil materials and placing the mixtures around building foundations, which provides a function similar to that of a cushion. Meanwhile, the stockpiling of scrap tires is a significant threat to our environment, and the engineering community has been looking for long‐term viable solutions to the recycling and reuse of rubber. A finite element program has been developed for modeling the time‐domain dynamic responses of soil–foundation–structure system, by which the effectiveness and robustness of the proposed method have been evaluated. In general, the structural responses, in terms of acceleration and inter‐story drift, can be reduced by 40–60%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号