首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24713篇
  免费   178篇
  国内免费   921篇
测绘学   1440篇
大气科学   2001篇
地球物理   4573篇
地质学   11707篇
海洋学   1036篇
天文学   1666篇
综合类   2161篇
自然地理   1228篇
  2022年   5篇
  2021年   3篇
  2020年   10篇
  2019年   3篇
  2018年   4764篇
  2017年   4046篇
  2016年   2593篇
  2015年   241篇
  2014年   98篇
  2013年   45篇
  2012年   1000篇
  2011年   2738篇
  2010年   2032篇
  2009年   2323篇
  2008年   1896篇
  2007年   2368篇
  2006年   63篇
  2005年   201篇
  2004年   406篇
  2003年   413篇
  2002年   256篇
  2001年   55篇
  2000年   55篇
  1999年   22篇
  1998年   28篇
  1997年   4篇
  1995年   3篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1983年   3篇
  1982年   8篇
  1981年   27篇
  1980年   25篇
  1979年   2篇
  1978年   2篇
  1976年   8篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
291.
The importance of the nitrogen source for phytoplankton growth in a highly eutrophic embayment, Dokai Bay, was investigated. The DIN concentration often exceeded 100 μM of which 40–70% was NH4 +. During two incubation experiments, the natural assemblage of mainly diatoms took up NH4 + instead of NO3 . The growth of two Skeletonema species isolated in Dokai Bay were significantly faster on NH4 + (1.86 and 1.27 div. d−1 respectively) than on NO3 (1.55 and 1.04 div. d−1 respectively). Our results indicated that these diatoms could grow faster by using NH4 + compared to NO3 in this eutrophic bay.  相似文献   
292.
An irradiance inversion model to estimate the in situ absorption coefficient of seawater has been developed for the Ultraviolet-A (UVA) wavelength domain. Input parameters are sun angle and the up-and downward planar irradiances measured for at least two depths. The present method does not require seawater to be sampled, and is a discrete wavelength method which returns the absorption coefficient at a given wavelength from the irradiances measured at that wavelength without assuming a spectral shape of any optical properties a priori. Comparison between the model results and spectrophotometric measurements shows that the model is practically useful when cloud cover in the atmosphere is ≤ 50%. According to the present method, measurements of the irradiances enable simultaneous observation of the in situ underwater UVA radiation level and the absorption capacity of bulk seawater using a radiometer.  相似文献   
293.
Numerical study of baroclinic tides in Luzon Strait   总被引:5,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   
294.
Recent findings on water masses, biogeochemical tracers, deep currents and basin-scale circulation in the East/Japan Sea, and numerical modeling of its circulation are reviewed. Warming continues up to 2007 despite an episode of bottom water formation in the winter of 2000–2001. Water masses have definitely changed since the 1970s and further changes are expected due to the continuation of warming. Accumulation of current data in deep waters of the East/Japan Sea reveals that the circulation in the East/Japan Sea is primarily cyclonic with sub-basin scale cyclonic and anticyclonic cells in the Ulleung Basin (Tsushima Basin). Our understanding of the circulation of intermediate water masses has been deepened through high-resolution numerical studies, and the implementation of data assimilation has had initial success. However, the East/Japan Sea is unique in terms of the fine vertical structures of physical and biogeochemical properties of cold water mass measured at the highest precision and their rapid change with the global warming, so that full understanding of the structures and their change requires in-depth process studies with continuous monitoring programs.  相似文献   
295.
Remote sensing reflectance [R rs(λ)] and absorption coefficients of red tides were measured in Isahaya Bay, southwestern Japan, to investigate differences in the optical properties of red tide and non-red tide waters. We defined colored areas of the sea surface, visualized from shipboard, as “red tides”. Peaks of the R rs(λ) spectra of non-red tide waters were at 565 nm, while those of red tides shifted to longer wavelengths (589 nm). The spectral shape of R rs(λ) was close to that of the reciprocal of the total absorption coefficient [1/a(λ)], implying that the R rs(λ) peak is determined by absorption. Absorption coefficients of phytoplankton [a ph(λ)], non-pigment particles and colored dissolved organic matter increased with increasing chlorophyll a concentration (Chl a), and those coefficients were correlated with Chl a for both red tide and non-red tide waters. Using these relationships between absorption coefficients and Chl a, variation in the spectrum of 1/a(λ) as a function of Chl a was calculated. The peak of 1/a(λ) shifted to longer wavelengths with increasing Chl a. Furthermore, the relative contribution of a ph(λ) to the total absorption in red tide water was significantly higher than in non-red tide water in the wavelength range 550–600 nm, including the peak. Our results show that the variation of a ph(λ) with Chl a dominates the behavior of the R rs(λ) peak, and utilization of R rs(λ) peaks at 589 and 565 nm may be useful to discriminate between red tide and non-red tide waters by remote sensing.  相似文献   
296.
We conducted hydrographic observations ten times in the Tsushima Strait to reveal seasonal variations of horizontal material transports such as of heat, freshwater, chlorophyll a, and dissolved inorganic nitrogen (DIN) and phosphorus (DIP) through the eastern channel of the Tsushima Strait (ECTS). The volume, freshwater, and heat transport results are of nearly the same order as results reported in previous studies. The annual mean DIN and DIP transports of 3.59 kmol/s and 0.29 kmol/s are large relative to those of the Changjiang and the Taiwan Strait and are horizontally transported through the ECTS. Nutrient transports are high in July–August and October and low in April and November. Increased nutrient transports in July–August and October are due to the appearance of a cold saline water mass in the bottom layer of the ECTS. Changes in DIN transports in summer and autumn, which account for two-thirds of the total annual DIN transport, would have a large effect on the nitrogen budget and biological productivity in the Tsushima Warm Current region.  相似文献   
297.
A monthly mean climatology of the mixed layer depth (MLD) in the North Pacific has been produced by using Argo observations. The optimum method and parameter for evaluating the MLD from the Argo data are statistically determined. The MLD and its properties from each density profile were calculated with the method and parameter. The monthly mean climatology of the MLD is computed on a 2° × 2° grid with more than 30 profiles for each grid. Two bands of deep mixed layer with more than 200 m depth are found to the north and south of the Kuroshio Extension in the winter climatology, which cannot be reproduced in some previous climatologies. Early shoaling of the winter mixed layer between 20–30°N, which has been pointed out by previous studies, is also well recognized. A notable feature suggested by our climatology is that the deepest mixed layer tends to occur about one month before the mixed layer density peaks in the middle latitudes, especially in the western region, while they tend to coincide with each other in higher latitudes.  相似文献   
298.
As reported in former studies, temperature observations obtained by expendable bathythermographs (XBTs) and mechanical bathythermographs (MBTs) appear to have positive biases as much as they affect major climate signals. These biases have not been fully taken into account in previous ocean temperature analyses, which have been widely used to detect global warming signals in the oceans. This report proposes a methodology for directly eliminating the biases from the XBT and MBT observations. In the case of XBT observation, assuming that the positive temperature biases mainly originate from greater depths given by conventional XBT fall-rate equations than the truth, a depth bias equation is constructed by fitting depth differences between XBT data and more accurate oceanographic observations to a linear equation of elapsed time. Such depth bias equations are introduced separately for each year and for each probe type. Uncertainty in the gradient of the linear equation is evaluated using a non-parametric test. The typical depth bias is +10 m at 700 m depth on average, which is probably caused by various indeterminable sources of error in the XBT observations as well as a lack of representativeness in the fall-rate equations adopted so far. Depth biases in MBT are fitted to quadratic equations of depth in a similar manner to the XBT method. Correcting the historical XBT and MBT depth biases by these equations allows a historical ocean temperature analysis to be conducted. In comparison with the previous temperature analysis, large differences are found in the present analysis as follows: the duration of large ocean heat content in the 1970s shortens dramatically, and recent ocean cooling becomes insignificant. The result is also in better agreement with tide gauge observations. On leave from the Meteorological Research Institute of the Japan Meteorological Agency.  相似文献   
299.
Two onboard observation campaigns were carried out in the western boundary region of the Philippine Sea in December 2006 and January 2008 during the 2006/07 El Niño and the 2007/08 La Niña to observe the North Equatorial Current (NEC), Mindanao Current (MC), and Kuroshio current system. The NEC and MC measured in late 2006 under El Niño conditions were stronger than those measured during early 2008 under La Niña conditions. The opposite was true for the current speed of the Kuroshio, which was stronger in early 2008 than in late 2006. The increase in dynamic height around 8°N, 130°E from December 2006 to January 2008 resulted in a weakening of the NEC and MC. Local wind variability in this region did not appear to contribute to changes in the current system.  相似文献   
300.
Multidisciplinary oceanic investigation was undertaken in Aug–Sep. 2003 along a transect from Northwestern (Busan, Korea) to Southeastern Pacific (Talcahuano, Chile) to understand the physical, chemical and biological features in the surface water, and to depict their interaction with the atmosphere. Among the twenty parameters measured, we describe the physical, chemical and biological features. Physico-chemical data were analyzed in conjunction with the geographic position and yielded 7 peculiar surface water masses. The first water mass (28.4°N, 130.8°E to 21.5°N, 139.5°E) was warm and low in phosphate and nitrate content, and high in silicate. The concentration of phytoplankton pigment was one of the lowest. The second (20.4°N, 140.7°E to 2.2°S, 162.9°E) was the warmest and the least saline. Nitrate and phosphate concentration were one of the lowest. Chlorophyll a (Chl a) concentration was the lowest among the surface waters. The third (3.4°S, 164.0°E to 14.5°S, 173.3°E) was warm. Nitrate concentration was the lowest. CHL-a, peridinin (Perid), violaxanthin (Viola), zeaxanthin (Zea), chlorophyll-b (Chl b) and β-CAR were abundant. The fourth (18.6°S, 177.5°E to 31.8°S, 123.9°W) was saline and poor in nutrient concentration. The contributions of 19′-butanoyloxyfucoxanthin (But-fuco), 19′-hexanoyloxyfucoxanthin (Hex-fuco), and CHL b to CHL a were non-negligible. The fifth (32.4°S, 122.1°W to 33.8°S, 117.2°W) was relatively cold and well oxygenated. Concentration of Fuco, But-fuco, Hex-fuco and Chl b was high. The sixth (34.2°S, 115.4°W to 37.4°S, 92.1°W) was cold, well oxygenated and enriched with phosphate and nitrate. Concentration of phytoplankton pigment was, however, one of the lowest. The seventh, located off the Chilean coast, from 37.2°S, 87.2°W to 36.1°S, 74.1°W was well oxygenated and highly enriched with nitrate and phosphate. Phytoplankton pigments such as Fuco, Perid, But-fico, and Hex-fuco were rich. The 7 surface water masses are partially attributed to Kuroshio Current, North Equatorial Current and North Equatorial Countercurrent, South Equatorial current, South Pacific Subtropical Gyre, South Pacific Current, Subtropical Front and Chilean coastal water. The differences in physicochemical characteristics and the history of the surface water resulted in difference in quantity and composition of the phytoplankton pigment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号