首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   26篇
  国内免费   8篇
测绘学   16篇
大气科学   66篇
地球物理   159篇
地质学   274篇
海洋学   88篇
天文学   88篇
综合类   1篇
自然地理   92篇
  2022年   4篇
  2021年   11篇
  2020年   17篇
  2019年   8篇
  2018年   25篇
  2017年   20篇
  2016年   29篇
  2015年   23篇
  2014年   24篇
  2013年   61篇
  2012年   30篇
  2011年   52篇
  2010年   38篇
  2009年   37篇
  2008年   46篇
  2007年   40篇
  2006年   24篇
  2005年   19篇
  2004年   30篇
  2003年   29篇
  2002年   21篇
  2001年   15篇
  2000年   12篇
  1999年   13篇
  1998年   10篇
  1997年   13篇
  1996年   7篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   10篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1988年   4篇
  1987年   14篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   7篇
  1977年   7篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1970年   2篇
排序方式: 共有784条查询结果,搜索用时 312 毫秒
21.
Military training activities reduce vegetation cover, disturb crusts, and degrade soil aggregates, making the land more vulnerable to wind erosion. The objective of this study was to quantify wind erosion rates for typical conditions at the Marine Corps Air Ground Combat Center, Twentynine Palms, CA, U.S.A. Five Big Spring Number Eight (BSNE) sampler stations were installed at each of five sites. Each BSNE station consisted of five BSNE samplers with the lowest sampler at 0·05 m and the highest sampler at 1·0 m above the soil surface. Once a month, sediment was collected from the samplers for analysis. Occurrence of saltating soil aggregates was recorded every hour using Sensits, one at each site. The site with the most erosion had a sediment discharge of 311 kg m−1 over a period of 17 months. Other sites eroded much less because of significant rock cover or the presence of a crust. Hourly sediment discharge was estimated combining hourly Sensit count and monthly sediment discharge measured using BSNE samplers. More simultaneously measured data are needed to better characterize the relationship between these two and reconstruct a detailed time-series of wind erosion. This measured time-series can then be used for comparison with simulation results from process-based wind erosion models such as the Wind Erosion Prediction System (WEPS), once it has been adapted to the unique aspects of military lands.  相似文献   
22.
El Niño/Southern Oscillation (ENSO) is considered one of the most powerful forces driving anomalous global weather patterns. Large-scale seasonal precipitation and temperature changes influenced by ENSO have been examined in many areas of the world. The southeastern United States is one of the regions affected by ENSO events. In this study, remote sensing detection of vegetation response to ENSO phases is demonstrated with one-kilometer biweekly Normalized Difference Vegetation Index (NDVI) data (1989–1999) derived from the Advanced Very High Resolution Radiometer(AVHRR). The impacts of three ENSO phases, cold, warm and neutral, on vegetation were analyzed with a focus on two vegetation cover types, two seasons and two geographic regions within the southeastern U.S. Significant ENSO effects on vegetation were found in cropland and forest vegetation cover types based on image and statistical analysis of the NDVI data. The results indicate that vegetation condition was optimal during the ENSO neutral phase for both agricultural and natural vegetation.  相似文献   
23.
Samples of the estuarine-spawning teleostAcanthopagrus butcheri were collected from nine estuaries and a coastal lake, located in the Pilbara and South-western drainage divisions of Western Australia and distributed along a coastline covering a distance of nearly 2,000 km. The patterns of allozyme variation in these samples were used to explore the extent to which there was variation in the genetic compositions of black bream assemblages in geographically-isolated estuarine systems, and whether or not any such variation could be related to the geographical location or type of estuary. Although only three of 36 scorable loci (Gpi-1, Ldh andMdh-2) exhibited variation that could be used for analysis, there was considerable variation in allele frequencies at these loci among the different samples (mean FST=0.166). Much of the detected variation was attributable to differences between the samples collected from the two drainage divisions, which are located in very different climatic regions. Furthermore, the genetic compositions of samples from neighbouring estuaries were typically more similar to each other than to those of samples collected from more distantly-located systems. However, the assemblages in one west coast and two south coast estuaries, that are closed to the ocean for extensive periods of time during the year, all showed very similar genetic compositions. Nevertheless, it is crucial to recognise that, pairwise comparisons of samples collected from the different estuaries, both within and between the two drainage divisions, almost invariably showed statistically significant differences in allele frequencies at one or more loci. Thus, our results indicate that the local populations of black bream in individual estuaries are genetically distinct, which is probably a consequence of both a limited movement by individuals between estuaries and the effects of differences in regional and local environmental conditions.  相似文献   
24.
Understanding the formation of laminated, organic-rich sediments is an essential topic for researchers interested in fossil fuels, biogeochemical cycles, Earth's environmental history and global change. Biologists have very recently demonstrated that some marine phytoplankton blooms actively govern their own sedimentation by the formation of sticky transparent gels that facilitate rapid aggregation, accelerated sinking and efficient export flux. Here we present fossil evidence of unfragmented, low-diversity phytoplankton assemblages preserved as sedimentary laminae and irregular flocs that are attributable to a similar phytoplankton-driven sedimentary mechanism we term ‘self-sedimentation’. The geological evidence suggests that self-sedimentation precludes significant heterotrophic grazing, propels the formation of some conspicuous hemipelagic sedimentary laminae and results in efficient carbon and opal flux to the sediments. We suggest that the self-sedimentation phenomenon may have broad implications for the geological history of biogeochemical cycling, oceanic ecological dynamics, and abrupt atmospheric/environmental change. Broader recognition of the self-sedimentation phenomenon as explicitly defined here is a prerequisite to testing these unconventional hypotheses.  相似文献   
25.
Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions   总被引:2,自引:1,他引:2  
This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion.The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed.  相似文献   
26.
27.
Quantifying the proportion of the river hydrograph derived from the different hydrological pathways is essential for understanding the behaviour of a catchment. This paper describes a new approach using the output from master recession curve analysis to inform a new algorithm based on the Lyne and Hollick ‘one‐parameter’ signal analysis filtering algorithm. This approach was applied to six catchments (including two subcatchments of these) in Ireland. The conceptual model for each catchment consists of four main flow pathways: overland flow, interflow, shallow groundwater and deep groundwater. The results were compared with those of the master recession curve analysis, a recharge coefficient approach developed in Ireland and the semi‐distributed, lumped and deterministic hydrological model Nedbør‐Afstrømings‐Model. The new algorithm removes the ‘free variable’ aspect that is typically associated with filtering algorithms and provides a means of estimating the contribution of each pathway that is consistent with the results of hydrograph separation in catchments that are dominated by quick response pathways. These types of catchments are underlain by poorly productive aquifers that are not capable of providing large baseflows in the river. Such aquifers underlie over 73% of Ireland, ensuring that this new algorithm is applicable in the majority of catchments in Ireland and potentially in those catchments internationally that are strongly influenced by the quick‐responding hydrological pathways. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
28.
The hydrologic response of engineered media plays an important role in determining a stormwater control measure's ability to reduce runoff volume, flow rate, timing, and pollutant loads. Five engineered media, typical of living roof and bioretention stormwater control measures, were investigated in laboratory column experiments for their hydrologic responses to steady, large inflow rates. The inflow, medium water content response, and outflow were all measured. The water flow mechanism (uniform flow vs. preferential flow) was investigated by analyzing medium water content response in terms of timing, magnitude, and sequence with depth. Modeling the hydrologic process was conducted in the HYDRUS‐1D software, applying the Richards equation for uniform flow modeling, and a mobile–immobile model for preferential flow modeling. Uniform flow existed in most cases, including all initially dry living roof media with bimodal pore size distributions and one bioretention medium with unimodal pore size distribution. The Richards equation can predict the outflow hydrograph reasonably well for uniform flow conditions when medium hydraulic properties are adequately represented by appropriate functions. Preferential flow was found in two media with bimodal pore size distributions. The occurrence of preferential flow is more likely due to the interaction between the bimodal pore structure and the initial water content rather than the large inflow rate.  相似文献   
29.
To predict future river flows, empirical trend projection (ETP) analyses and extends historic trends, while hydroclimatic modelling (HCM) incorporates regional downscaling from global circulation model (GCM) outputs. We applied both approaches to the extensively allocated Oldman River Basin that drains the North American Rocky Mountains and provides an international focus for water sharing. For ETP, we analysed monthly discharges from 1912 to 2008 with non‐parametric regression, and extrapolated changes to 2055. For modelling, we refined the physical models MTCLIM and SNOPAC to provide water inputs into RIVRQ (river discharge), a model that assesses the streamflow regime as involving dynamic peaks superimposed on stable baseflow. After parameterization with 1960–1989 data, we assessed climate forecasts from six GCMs: CGCM1‐A, HadCM3, NCAR‐CCM3, ECHAM4 and 5 and GCM2. Modelling reasonably reconstructed monthly hydrographs (R2 about 0·7), and averaging over three decades closely reconstructed the monthly pattern (R2 = 0·94). When applied to the GCM forecasts, the model predicted that summer flows would decline considerably, while winter and early spring flows would increase, producing a slight decline in the annual discharge (?3%, 2005–2055). The ETP predicted similarly decreased summer flows but slight change in winter flows and greater annual flow reduction (?9%). The partial convergence of the seasonal flow projections increases confidence in a composite analysis and we thus predict further declines in summer (about ? 15%) and annual flows (about ? 5%). This composite projection indicates a more modest change than had been anticipated based on earlier GCM analyses or trend projections that considered only three or four decades. For other river basins, we recommend the utilization of ETP based on the longest available streamflow records, and HCM with multiple GCMs. The degree of correspondence from these two independent approaches would provide a basis for assessing the confidence in projections for future river flows and surface water supplies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号