首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   14篇
  国内免费   4篇
测绘学   7篇
大气科学   2篇
地球物理   33篇
地质学   38篇
海洋学   5篇
天文学   5篇
综合类   2篇
自然地理   3篇
  2023年   1篇
  2022年   9篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   15篇
  2017年   9篇
  2016年   10篇
  2015年   8篇
  2014年   6篇
  2013年   12篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  1999年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
11.
Pegah  Ehsan  Liu  Huabei 《Acta Geotechnica》2020,15(11):3193-3209
Acta Geotechnica - The main objective of this study was to propose an approach to estimate the peak friction angles of over-consolidated granular soil deposits by using the P-wave velocity and the...  相似文献   
12.
In this paper, the effects of pulse period associated with near‐field ground motions on the seismic demands of soil–MDOF structure systems are investigated by using mathematical pulse models. Three non‐dimensional parameters are employed as the crucial parameters, which govern the responses of soil–structure systems: (1) non‐dimensional frequency as the structure‐to‐soil stiffness ratio; (2) aspect ratio of the superstructure; and (3) structural target ductility ratio. The soil beneath the superstructure is simulated on the basis of the Cone model concept. The superstructure is modeled as a nonlinear shear building. Interstory drift ratio is selected as the main engineering demand parameter for soil–structure systems. It is demonstrated that the contribution of higher modes to the response of soil–structure system depends on the pulse‐to‐interacting system period ratio instead of pulse‐to‐fixed‐base structure period ratio. Furthermore, results of the MDOF superstructures demonstrate that increasing structural target ductility ratio results in the first‐mode domination for both fixed‐base structure and soil–structure system. Additionally, increasing non‐dimensional frequency and aspect ratio of the superstructure respectively decrease and increase the structural responses. Moreover, comparison of the equivalent soil–SDOF structure system and the soil–MDOF structure system elucidates that higher‐mode effects are more significant, when soil–structure interaction is taken into account. In general, the effects of fling step and forward directivity pulses on activating higher modes of the superstructure are more sever in soil–structure systems, and in addition, the influences of forward directivity pulses are more considerable than fling step ones. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
13.
The worldwide increase in commercial fisheries and its impact on ecosystems as well as inefficient fishery management have led to overfishing and frequent breakdown of traditional fish stocks.In this context,an analysis of Khuzestan inshore fisheries data covering the years 2002–2011,was conducted in reliance on testing for occurrence of the fishing down marine food webs(FDMFW) phenomenon in the North of Persian Gulf Large Marine Ecosystem(LME).In this study,the mean trophic level(m TL) and the fishing-in-balance(FIB)-index of Khuzestan landings during this period of time were estimated using the trophic level of 47 fishery resources.Increase in total landings(Y) was observed,which explained the high fishing yield in major fishery resources(especially demersal).Moreover,the moderates decreasing trend in m TL per decade,and the increasing trend in FIB-index were observed.The status of fishery resources in Khuzestan inshore waters(under exploited but not overexploited),the rise in Y,FIB and slightly drop in m TL can be considered as indirect indicators of the fishing impacts on the trophic structure of marine communities.Based on this result,probability occurrence of FDMFW process in Khuzestan inshore waters is low to some extent.However,we suggest that the goal of management programs in Khuzestan inshore waters should prevent the continuance of this trend in the long-term using an ecosystem-based approach.  相似文献   
14.
Chowdhury  Ehsan H.  Hassan  Quazi K. 《Natural Hazards》2017,88(3):1805-1823
Natural Hazards - Flooding is one of the natural disasters that affect the livelihood of the people living in the floodplains, like Bangladesh. Here, we proposed to employ SAR satellite images in...  相似文献   
15.
16.
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season.  相似文献   
17.
印度河扇更新世发育的沉积物波结构复杂、形态多样,其形成过程的认识程度低。本次研究通过高分辨率地震数据和地震解释技术,研究了印度河扇沉积物波的波长、形态、波峰变化等形态特征;阐述了沉积物波与沉积物变形特征的差异、识别了两者的区分标志;总结了水道堤岸斜坡和区域斜坡上沉积物波的分布规律;在此基础上,讨论了沉积物波的形成机理和控制因素,分析了沉积物波的形成过程,并建立了印度河扇沉积物波的形成模式。研究表明: (1)研究区沉积物波波长平均为486.84 m,最大1473 m;波高在10~60 m之间,平均30 m。(2)沉积物波的形态有对称型和非对称型,其迁移方式有上坡迁移型、加积型和下坡迁移型;沉积物波主要发育在水道堤岸的斜坡上,在区域斜坡上也发育少量的沉积物波,这2种沉积物波波脊的走向差异很大,水道堤岸斜坡上的沉积物波主要分布于水道凹岸堤岸的外侧,距离水道越远其规模(波长、波高)越小,波脊走向近于NE-SW方向,与水道的走向平行或斜交;区域斜坡上的沉积物波波脊的走向多为NW-SE向,平行于区域斜坡的走向,离源区越远规模越大。(3)水道堤岸斜坡上的沉积物波是由水道型浊流在离心力的作用下,溢出水道的凹岸,在堤岸外侧的斜坡上沉积形成的,堤岸斜坡的角度对沉积物波的发育规模影响不大,浊流的强度和输沙量对其规模影响大;区域斜坡上发育的沉积物波是由顺坡而下的非水道化的浊流沉积形成;滑塌变形造成的起伏地貌以及早期沉积物波的存在,也都影响了后期沉积物波的发育。  相似文献   
18.
The seismic industry is increasingly acquiring broadband data in order to reap the benefits of extra low‐ and high‐frequency contents. At the low end, as the sharp low‐cut decay gets closer to zero frequency, it becomes harder for a well tie to estimate the low‐frequency response correctly. The fundamental difficulty is that well logs are too short to allow accurate estimation of the long‐period content of the data. Three distinctive techniques, namely parametric constant phase, frequency‐domain least squares with multi‐tapering, and Bayesian time domain with broadband priors, are introduced in this paper to provide a robust solution to the wavelet estimation problem for broadband seismic data. Each of these techniques has a different mathematical foundation that would enable one to explore a wide range of solutions that could be used on a case‐by‐case basis depending on the problem at hand. A case study from the North West Shelf Australia is used to analyse the performance of the proposed techniques. Cross‐validation is proposed as a robust quality control measure for evaluating well‐tie applications. It is observed that when the seismic data are carefully processed, then the constant phase approach would likely offer a good solution. The frequency‐domain method does not assume a constant phase. This flexibility makes it prone to over‐fitting when the phase is approximately constant. Broadband priors for the time‐domain least‐squares method are found to perform well in defining low‐frequency side lobes to the wavelet.  相似文献   
19.
It is acknowledged that for extending the experimental results to real scale design, it is necessary to use an appropriate numerical analysis. The good analysis in geotechnical problems needs to adopt a suitable constitutive model for the materials. This paper presents a modeling approach to investigate the complex behavior of granular trench and reinforcement system. For this purpose, an experimental and numerical investigation has been carried out on the behavior of pullout resistance of an embedded anchor (circular plate) with and without geogrid reinforcement layers in stabilized loose and dense sand using a granular trench. Different parameters have been considered, such as number of geogrid layers, embedment ratios, relative density of soil, and height ratios of granular trench. Finite element analysis with Hardening Soil Model was utilized for sand and CANAsand constitutive model was used for granular trench to investigate failure mechanism and the associated rupture surfaces. Results showed that, when soil was improved with the granular-geogrid trench, the uplift force significantly increased, but in geogrid-reinforced granular trench condition, the ultimate pullout resistance at failure increased as the number of geogrid layers increased up to the third layer, the fifth layer had a negligible effect in comparison with the third layer of reinforcement. The ultimate uplift capacity of anchor plate and the variation of surface deformation for all the tests indicated a close agreement between the experimental and numerical models.  相似文献   
20.
Mountainous torrents often carry large amounts of loose materials into the rivers, thus causing strong sediment transport. Experimentally it was found for the first time that when the intensive sediment motion occurs downstream over a gentle slope, the siltation of the riverbed is induced and the sediment particles can move upstream rapidly in the form of a retrograde sand wave, resulting in a higher water level along the river. To further study the complex mechanisms of this problem, a sediment mass model in the framework of the Smoothed Particle Hydrodynamics(SPH) method was presented to simulate the riverbed evolution, sediment particle motion, and the generation and development of dynamic hydraulic jump under the condition of sufficient sediment supply over a steep slope with varying angles. Because the sediment is not a continuous medium, the marker particle tracking approach was proposed to represent a piece of sediment with a marked sediment particle. The twophase SPH model realizes the interaction between the sediment and fluid by moving the bed boundary particles up and down, so it can reasonably treat the fluid-sediment interfaces with high CPU efficiency. The critical triggering condition of sediment motion, the propagation of the hydraulic jump and the initial siltation position were all systematically studied. The experimental and numerical results revealed the extra disastrous sediment effect in a mountainous flood. The findings will be useful references to the disaster prevention and mitigation in mountainous rivers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号