首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2970篇
  免费   89篇
  国内免费   25篇
测绘学   72篇
大气科学   179篇
地球物理   678篇
地质学   1068篇
海洋学   221篇
天文学   603篇
综合类   24篇
自然地理   239篇
  2022年   18篇
  2021年   19篇
  2020年   35篇
  2019年   34篇
  2018年   60篇
  2017年   35篇
  2016年   70篇
  2015年   42篇
  2014年   77篇
  2013年   127篇
  2012年   90篇
  2011年   114篇
  2010年   143篇
  2009年   157篇
  2008年   136篇
  2007年   120篇
  2006年   121篇
  2005年   98篇
  2004年   96篇
  2003年   96篇
  2002年   75篇
  2001年   50篇
  2000年   55篇
  1999年   40篇
  1998年   39篇
  1997年   35篇
  1996年   49篇
  1995年   39篇
  1994年   43篇
  1993年   40篇
  1992年   36篇
  1991年   17篇
  1990年   33篇
  1989年   32篇
  1988年   41篇
  1987年   35篇
  1986年   32篇
  1985年   64篇
  1984年   53篇
  1983年   61篇
  1982年   55篇
  1981年   60篇
  1980年   42篇
  1979年   51篇
  1978年   43篇
  1977年   37篇
  1976年   34篇
  1975年   28篇
  1974年   43篇
  1973年   43篇
排序方式: 共有3084条查询结果,搜索用时 31 毫秒
61.
We present digital pictures of an active region network cell in five quantities, measured simultaneously: continuum intensity, line-center intensity, equivalent width, magnetogram signal, and magnetic field strength. These maps are derived from computer analysis of circularly polarized line profiles of FeI 5250.2; spectral and spatial resolution are 1/40 Å and 1.5, respectively. Measured Zeeman splittings show the existence of strong magnetic fields (1000–1800 G) at nearly all points with a magnetogram signal exceeding 125 G. The mean and rms deviation of the field strengths change by less than 20% over a factor-of-four range of fluxes. From the significant disparity between measured fluxes and field strengths, we conclude that large flux patches (up to 4 across) consist of closely-packed unresolved filaments. The smallest filaments must be less than 0.7 in diameter. We also observe the dark component of the photospheric network, which appears to contain sizable transverse fields.  相似文献   
62.
63.
The total solar eclipse of February 26, 1979 was monitored at far infrared wavelengths from the NASA Lear Jet Observatory flying at 12.9 km in the eclipse shadow. The resultant eclipse curve for radiation within a bandwidth of 20 cm–1 centered upon 25 cm–1 (400 m) was measured and analysed at an equivalent angular resolution of 1 arc sec over a 100 arc sec region adjacent to the limb to provide information on the intensity distribution of continuum radiation close to this limb. The curve has been compared to predictions derived from models of the solar atmosphere for the specific geometry of this eclipse, and is shown to match most closely that derived from a uniform distribution of radiation across the disk. This is in distinct contrast to the result obtained in the only other comparable experiment, carried out over Africa in 1973 from a supersonic Concorde aircraft, in which an intense but narrow spike of far infrared radiation at the extreme solar limb was inferred from the data. The absence also in the present observations of the significant limb brightening predicted by the HSRA model (in which homogeneity within the source region is assumed) is in substantial agreement with lower resolution results from mountain altitudes. This result is interpreted as further evidence for the presence in the Sun's lower chromosphere of significant inhomogeneity with a scale size of at least 1000 km at this depth.  相似文献   
64.
Latitudinal heat transport in the ocean and atmosphere represents a fundamental process of the Earth's climate system. The ocean component of heat transport is effected by the thermohaline circulation. Changes in this circulation, and hence latitudinal heat transport, would have a significant effect on global climate. Paleoclimate evidence from the Greenland ice cores and deep sea sediment cores suggests that during much of glacial time the climate system oscillated between two different states. Bimodal equilibrium states of the thermohaline circulation have been demonstrated in climate models. We address the question of the role of the atmospheric hydrological cycle on the global thermohaline circulation and the feedback to the climate system through changes in the ocean's latitudinal heat transport, with a simple coupled ocean-atmosphere energy-salt balance model. Two components of the atmospheric hydrological cycle, i.e., latitudinal water vapor transport and the net flux of water vapor from the Atlantic to the Pacific Ocean appear to play separate roles. If the inter-basin transport is sufficiently large, small changes in water vapor transport over the North Atlantic can effect bifurcation or a rapid transition between two different equilibria in the global thermohaline circulation; maximum difference between the modes occurs in the North Atlantic. If the inter-basin transport is from the Pacific to the Atlantic and sufficiently large, latitudinal vapor transport in the North Pacific controls the bifurcations, with maximum changes occurring in the North Pacific. For intermediate values of inter-basin transport, no rapid transitions occur in either basin. In the regime with vapor flux from the Atlantic to the Pacific, the on mode has strong production of deep water in the North Atlantic and a large flux of heat to the atmosphere from the high latitude North Atlantic. The off mode has strong deep water production in the Southern Ocean and weak production in the North Pacific. Heat transport into the high latitude North Atlantic by the ocean is reduced to about 20% of the on mode value. For estimated values of water vapor transport for the present climate the model asserts that while water vapor transport from the Atlantic to the Pacific Ocean is sufficiently large to make the North Atlantic the dominant region for deep water production, latitudinal water vapor transport is sufficiently low that the thermohaline circulation appears stable, i.e., far from a bifurcation point. This conclusion is supported to some extent by the fact that the high latitude temperature of the atmosphere as recorded in the Greenland ice cores has changed little over the last 9000 years.  相似文献   
65.
The 0.3–2.6 m reflectance spectra of most mafic and ultramafic assemblages can best be interpreted by considering the spectra as being composed of mafic silicate spectra modified by the presence of opaques, such as ilmenite or magnetite, and plagioclase feldspar. The systematic spectral-compositional relationships for olivine, orthopyroxene, and clinopyroxene have been examined and it has been determined that absorption band wavelength positions are correlated with ferrous iron content. Binary mafic silicate mixtures are generally less well understood, but certain spectral features such as reflectance maxima and minima wavelength positions and absorption band areas can be used to quantify or at least constrain end member abundances and compositions. The addition of opaques to a mafic silicate assemblage lowers overall reflectance and band depths. This differs from the effects of increasing grain size which are to lower overall reflectance but increase band depths. Plagioclase is relatively transparent compared to mafic silicates and must be present in appreciable amounts (tens of percent) to be spectrally detectable. The reflectance spectra of most mafic and ultramafic assemblages are dominated by mafic silicate absorption features and analysis of their spectra on this basis allows constraints to be placed on properties such as end member abundances and compositions.  相似文献   
66.
The association of solar radio bursts of spectral type II and coronal shocks with solar flare ejecta observed in H, the green coronal line, and white-light coronagraphs is examined. Rather than identifying fast-moving optical coronal transients with outward-travelling shock waves that generate type II radio bursts, as has been suggested in some earlier papers, we suggest that, for the most part, such transients should probably be identified with piston-type phenomena well behind the shock. We then discuss a general model, consisting of three main velocity regimes, in which we relate type II radio bursts and coronal shocks to optically-observed ejecta.  相似文献   
67.
Noble gases in three meteoritic samples were examined by stepwise heating, in an attempt to relate peaks in the outgassing curves to specific minerals: NeKrXe in Allende (C3V) and an Allende residue insoluble in HF-HCl, and Xe in Abee (E4). In Allende, chromite and carbon contain most of the trapped Ne (20Ne/22Ne ≈ 8.7) and anomalous Xe enriched in light and heavy isotopes, and release it at ~850°C (bulk meteorite) or 1000°C (residue). Mineral Q, containing most of the trapped Ar, Kr, Xe as well as some Ne (20Ne/22Ne ≈ 10.4), releases its gases mainly between 1200 and 1600°C, well above the release temperatures of organic polymers (300–500°) or amorphous carbon (800–1000°). The high noble-gas release temperature, ready solubility in oxidizing acids, and correlation with acid-soluble Fe and Cr all point to an inorganic rather than carbonaceous nature of Q.All the radiogenic 129Xe is contained in HCl, HF-soluble minerals, and is distributed as follows over the peaks in the release curve: Attend 1000° (75%), 1300° (25%); Abee (data of Hohenberg and Reynolds, 1969) ~850° (15%), 1100° (60%), 1300° (25%). No conclusive identifications of host phases can yet be given; possible candidates are troilite and silicates for Allende, and djerfisherite, troilite and silicates for Abee.Mineral Q strongly absorbs air xenon, and releases some of it only at 800–1000°C. Dilution by air Xe from Q and other minerals may explain why temperature fractions from bulk meteorites often contain less 124–130Xe for a given enrichment in heavy isotopes than does xenon from etched chromitecarbon samples, although chromite-carbon is the source of the anomalous xenon in either case. Air xenon contamination thus is an important source of error in the derivation of fission xenon spectra.  相似文献   
68.
The primary fractionation process in iron meteorites is that responsible for the distribution of elements between the groups, most notably Ga and Ge, which show concentration ranges of 103 and 104 respectively. To investigate the cause of the primary fractionation, concentrations of 16 elements were converted to relative abundances by dividing the element/Ni ratio by the CI chondrite ratio. These abundances were plotted on logarithmic graphs with data for each group (except IB and IIICD) and each cluster of closely related anomalous irons averaged.Co, P, Au, As, Cu, Sb, Ge and Zn are positively correlated with Ga. For most groups (except IA, IC and IIAB) relative abundances of these elements tend to decrease from about 1 in approximately the order listed above. This is the expected order in which these elements will condense into Fe, Ni during equilibrium nebular condensation. Mean relative abundances of refractory elements in groups generally lie within a narrow range of 0.5–2, and are uncorrelated with Ga. Although the equilibrium model may be only a gross approximation, it suggests that most primary fractionation did occur during nebular condensation.The anomalous irons are essential for defining many of the primary fractionation trends. On several element-Ga graphs the displacements of the anomalous irons from the primary curves indicate that these irons experienced the same secondary fractionation process (probably fractional crystallization) that produced the trends within most groups. The anomalous irons appear to be samples from over 50 minor groups, which have similar histories to the 12 major groups.  相似文献   
69.
The theoretical disk brightness temperature spectra for Uranus are computed and compared with the observed microwave spectrum. It is shown that the emission observed at short centimeter wavelengths originates deep below the region where ammonia would ordinarily begin to condense. We demonstrate that this result is inconsistent with a wide range of atmospheric models in which the partial pressure of NH3 is given by the vapor-pressure equation in the upper atmosphere. It is estimated that the ammonia mixing ratio must be less than 10?6 in the 150 to 200°K temperature range. This is two orders of magnitude less than the expected mixing ratio based on solar abundances. The evidence for this depletion and a possible explanation are discussed.  相似文献   
70.
The intensities of 52 EUV emission lines from each of 9 hedgerow prominences observed at the limb with the Harvard experiment on ATM-Skylab have been compared with intensities from the interior of network cells at the center of the disk, in order to compare the prominence-corona (P-C) interface with the chromosphere-corona (C-C) transition region. The intensity ratio I cell/I prominence for each line varies systematically (in all of the prominences observed), with the temperature of formation of the line as T –0.6. The density sensitive C iii (formed at T 9 × 104 K) line ratio I 1175/I 977 implies an average density 1.3 × 109 electrons cm–3 in the P-C interface and 4 times this value in the C-C transition of the cells. The total optical thickness at the head of the Lyman continuum is 10 in most of the prominences studied; in two of the prominences, however, we cannot reject the possibility that o is large. Methods of analysis of these EUV data are developed assuming both a resolved and an unresolved internal prominence structure. Although the systematic differences between the P-C interface and the C-C transition are stressed, the similarities are probably more remarkable and may be a result of fine structure in the C-C transition.Currently on leave from the Institute of Astronomy, Hawaii; at the Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, 80309.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号