首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   27篇
  国内免费   12篇
测绘学   11篇
大气科学   41篇
地球物理   136篇
地质学   195篇
海洋学   44篇
天文学   45篇
综合类   5篇
自然地理   19篇
  2023年   4篇
  2022年   10篇
  2021年   9篇
  2020年   15篇
  2019年   18篇
  2018年   18篇
  2017年   16篇
  2016年   27篇
  2015年   20篇
  2014年   28篇
  2013年   32篇
  2012年   23篇
  2011年   25篇
  2010年   21篇
  2009年   29篇
  2008年   26篇
  2007年   13篇
  2006年   24篇
  2005年   16篇
  2004年   15篇
  2003年   11篇
  2002年   10篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   8篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1979年   3篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1959年   1篇
排序方式: 共有496条查询结果,搜索用时 734 毫秒
411.
The Gulf of Cariaco is a marginal basin located between the Cariaco Basin and the Paria Gulf, offshore NE Venezuela, along a system of active right-lateral strike-slip faults. It is connected to the Caribbean Sea via a shallow 58-m-deep sill implying that the gulf was disconnected from the global ocean during eustatic lowstands. A dense grid of high-resolution reflection seismic profiles has been used to determine the overall tectonic structure of the gulf and to establish the seismic stratigraphy of its sedimentary infill. Six unconformity-bounded seismic–stratigraphic units were identified in the upper ~ 200 m of the sedimentary infill. Detailed seismic–stratigraphic and seismic-facies analysis allowed defining a series of sedimentary features that can be used as indicators of past sea or lake level in the Gulf of Cariaco: i) delta offlap breaks, ii) evaporites, and iii) erosional unconformities. Using accurate measurements of these various indicators at several locations in the gulf and a simple total subsidence model, a relative sea/lake-level history encompassing the last 130 kyr could be reconstructed. In periods of connection with the open ocean, reconstructed relative sea level correlates well with eustatic sea level. In times of disconnection, distinct lake-level fluctuations occurred, which sometimes resulted in total dessication of the gulf. Lake-level fluctuations appear to correlate with major Heinrich Events, stadials and interstadials. MIS 4, the LGM and the Younger Dryas were thus identified in the Gulf of Cariaco sedimentary record. The last reconnection to the Caribbean Sea occurred during MWP1b (around 11.5 kyr). The very good fit of the Cariaco sea/lake-level curve with the eustatic sea-level curves (both in terms of amplitude and of timing) underscores potential for future paleoclimate research of the sedimentary record contained in this marginal basin, despite its active tectonic setting.  相似文献   
412.
Potential spawning habitat is defined as the area where environmental conditions are suitable for spawning to occur. Spawning adult data from the first quarter (January–March) of the International Bottom Trawl Survey have been used to study the inter-annual variability of the potential spawning habitat of North Sea plaice from 1980 to 2007. Generalised additive models (GAM) were used to create a model that related five environmental variables (depth, bottom temperature and salinity, seabed stress and sediment type) to presence–absence and abundance of spawning adults. Then, the habitat model was applied each year from 1970 to 2007 to predict inter-annual variability of the potential spawning habitat. Predicted responses obtained by GAM for each year were mapped using kriging. A hierarchical classification associated with a correspondence analysis was performed to cluster spawning suitable areas and to determine how they evolved across years. The potential spawning habitat was consistent with historical spawning ground locations described in the literature from eggs surveys. It was also found that the potential spawning habitat varied across years. Suitable areas were located in the southern part of the North Sea and along the eastern coast of England and Scotland in the eighties; they expanded further north from the nineties. Annual survey distributions did not show such northward expansion and remained located in the southern North Sea. This suggests that this species' actual spatial distribution remains stable against changing environmental conditions, and that the potential spawning habitat is not fully occupied. Changes in environmental conditions appear to remain within plaice environmental ranges, meaning that other factors may control the spatial distribution of plaice spawning habitat.  相似文献   
413.
414.
In the analysis of structural foundations for seismic loads, it is customary to distinguish two types of soil-structure interaction effect: kinematic interaction (or wave passage), and inertial interaction. The former refers to the phenomenon of wave scattering, which occurs because the foundation is much stiffer than the surrounding soil and cannot accommodate to its distortions. Inertial interaction, on the other hand, is caused by feedback of kinetic energy of the structure into the soil. This paper is concerned only with the first phenomenon. The rigorous analysis of rigid, embedded foundations subjected to seismic disturbances requires, in general, substantial computational effort. Indeed, a typical analysis would normally require models with finite elements and/or boundary elements. Although such methods may be used to find an accurate solution to the problem of kinematic interaction, their use is not always warranted, given the many uncertainties involved and the multitude of assumptions that must be considered. Hence, approximate solutions are attractive for this problem. One such approximate method is the remarkably simple algorithm proposed by Iguchi.3 This paper presents first an appraisal of this method by way of a comparison with accurate numerical solutions for cylindrical foundations; next the algorithm is applied to rectangular (prismatic) foundations. It is found that Iguchi's method gives results that are adequate for engineering purposes, even if not entirely accurate.  相似文献   
415.
An important aspect of earthquake loads exerted on extended structures, or structures founded on several foundations, is the spatial variability of the seismic motion. Hence, a rigorous earthquake resistant design of lifeline structures should account for the spatial character of the seismic input, at least in an approximate way. A procedure is proposed which enables addressing the problem of multiply supported structures, subjected to imperfectly correlated seismic excitations, by means of an extension to the response spectrum method. A modified response spectrum model is developed for the design of extended facilities subjected to single and multicomponent ground motion. The modification procedure is based on adjusting each spectral value of the given design response spectrum by means of a correction factor, which depends on the structural properties and on the characteristics of the wave propagation phenomenon. Finally, the theoretical model is validated through digital simulation of seismic ground motion, whereby model predictions are found to be in good agreement with exact results.  相似文献   
416.
417.
Subduction zones provide direct insight into plate boundary deformation and by studying these areas we better understand tectonic processes and variability over time. We studied the structure of the offshore subduction zone system of the Pampean flat‐slab segment (ca. 29–33°S) of the Chilean margin using seismic and bathymetric constraints. Here, we related and analysed the structural styles of the offshore and onshore western fore‐arc. Overlying the acoustic top of the continental basement, two syn‐extensional seismic sequences were recognised and correlated with onshore geological units and the Valparaíso Forearc Basin seismic sequences: (SII) Pliocene‐Pleistocene and (SI) Miocene‐Pliocene (Late Cretaceous (?) to Miocene‐Pliocene) syn‐extensional sequences. These sequences are separated by an unconformity (i.e. Valparaíso Unconformity). Seismic reflection data reveal that the eastward dipping extensional system (EI) recognised at the upper slope can be extended to the middle slope and controlled the accumulation of the older seismic package (SI). The westward dipping extensional system (EII) is essentially restricted to the middle slope. Here, EII cuts the eastward dipping extensional system (EI), preferentially parallel to the inclination of the older sequences (SI), and controlled a series of middle slope basins which are filled by the Pliocene‐Pleistocene seismic sequence (SII). At the upper slope and in the western Coastal Cordillera, the SII sequence is controlled by eastward dipping faults (EII) which are the local reactivation of older extensional faults (EI). The tectonic boundary between the middle (eastern outermost forearc block) and upper continental slope (western coastal block) is a prominent system of trenchward dipping normal fault scarps (ca. 1 km offset) that resemble a major trenchward dipping extensional fault system. This prominent structural feature can be readily detected along the Chilean erosive margin as well as the two extensional sets (EI and EII). Evidence of slumping, thrusting, reactivated faults and mass transport deposits, were recognised in the slope domain and locally restricted to some eastern dipping faults. These features could be related to gravitational effects or slope deformation due to coseismic deformation. The regional inclination of the pre‐Pliocene sequences favoured the gravitational collapse of the outermost forearc block. We propose that the structural configuration of the study area is dominantly controlled by tectonic erosion as well as the uplift of the Coastal Cordillera, which is partially controlled by pre‐Pliocene architecture.  相似文献   
418.
Abstract

— Stratigraphic and petrographic analysis of the Cretaceous to Eocene Tibetan sedimentary succession has allowed us to reinterpret in detail the sequence of events which led to closure of Neotethys and continental collision in the NW Himalaya.

During the Early Cretaceous, the Indian passive margin recorded basaltic magmaüc activity. Albian volcanic arenites, probably related to a major extensional tectonic event, are unconformably overlain by an Upper Cretaceous to Paleocene carbonate sequence, with a major quartzarenite episode triggered by the global eustatic sea-level fall at the Cretaceous/Tertiary boundary. At the same time, Neotethyan oceanic crust was being subducted beneath Asia, as testified by calc-alkalic volcanism and forearc basin sedimentation in the Transhimalayan belt.

Onset of collision and obduction of the Asian accretionary wedge onto the Indian continental rise was recorded by shoaling of the outer shelf at the Paleocene/Eocene boundary, related to flexural uplift of the passive margin. A few My later, foreland basin volcanic arenites derived from the uplifted Asian subduction complex onlapped onto the Indian continental terrace. All along the Himalaya, marine facies were rapidly replaced by continental redbeds in collisional basins on both sides of the ophiolitic suture. Next, foreland basin sedimentation was interrupted by fold-thrust deformation and final ophiolite emplacement.

The observed sequence of events compares favourably with theoretical models of rifted margin to overthrust belt transition and shows that initial phases of continental collision and obduction were completed within 10 to 15 My, with formation of a proto-Himalayan chain by the end of the middle Eocene.  相似文献   
419.
The potential use of spent coffee ground (SCG) for the removal of copper has been investigated as a low‐cost adsorbent for the biosorption of heavy metals. Adsorption batch experiments were conducted to determine isotherms and kinetics. The biosorption equilibrium data were found to fit well the Freundlich model and an experimental maximum biosorption capacity of copper ions 0.214 mmol/g was achieved. The biosorption kinetics of SCG was studied at different adsorbate concentrations (0.1–1.0 mM) and stirring speeds (100–400/min). The results showed an increase in the copper ion uptake with raising the initial metal concentration and the kinetic data followed the pseudo‐second order rate expression. The effect of stirring speed was a significant factor for the external mass transfer resistance at 100/min and coefficients were estimated by the Mathews and Weber model. Biosorption of copper ions onto SCG was observed to be related mainly with the release of calcium and hydrogen ions suggesting that biosorption performance by SCG can be attributed to ion‐exchange mechanism with calcium and hydrogen ions neutralizing the carboxyl and hydroxyl groups of the biomass.  相似文献   
420.
The adsorption kinetics of carbamazepine, naproxen, and trimethoprim in aqueous solution by Amberlite? XAD‐7 has been studied. The influence of adsorbent dose (1–3 g/L), stirring rate (80–240 rpm), pH (2–9), temperature (20–60°C), and initial concentration (25–75 ppm) on the adsorption kinetics has been analyzed. The removal efficiency in the first 2 h reaches 85% for carbamazepine, 60% for naproxen, and 70% for trimethoprim. pH appears to be the most important factor conditioning the removal of these latter solutes, whereas carbamazepine adsorption seems to be independent of the pH of the adsorptive solution. Initial concentration and operation temperature moderately influence the adsorption process. Finally, stirring rate scarcely affects the process. The experimental data have been fitted to four kinetic models, namely pseudo‐first and pseudo‐second order, intra‐particle diffusion and Bangham's. The model providing the best fit is the pseudo‐second order one. Again, pH is the factor that affects the adsorption rate in a more remarkable manner although other parameters such as temperature and stirring rate also contribute to accelerate the removal of the solutes. Under the optimal operation conditions, Amberlite? XAD‐7 exhibits a promising ability for the removal of the pharmaceuticals under study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号