首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   21篇
  国内免费   3篇
测绘学   4篇
大气科学   56篇
地球物理   91篇
地质学   149篇
海洋学   42篇
天文学   48篇
综合类   1篇
自然地理   58篇
  2021年   6篇
  2020年   4篇
  2019年   9篇
  2018年   11篇
  2017年   9篇
  2016年   22篇
  2015年   14篇
  2014年   14篇
  2013年   19篇
  2012年   15篇
  2011年   17篇
  2010年   9篇
  2009年   27篇
  2008年   9篇
  2007年   9篇
  2006年   15篇
  2005年   10篇
  2004年   9篇
  2003年   11篇
  2002年   18篇
  2001年   4篇
  2000年   12篇
  1999年   5篇
  1998年   12篇
  1997年   5篇
  1995年   7篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   6篇
  1984年   8篇
  1983年   10篇
  1981年   6篇
  1980年   3篇
  1979年   3篇
  1978年   8篇
  1976年   7篇
  1975年   6篇
  1974年   7篇
  1973年   6篇
  1969年   5篇
  1967年   2篇
  1965年   4篇
  1962年   2篇
  1959年   2篇
排序方式: 共有449条查询结果,搜索用时 31 毫秒
241.
Seismicity associated with mining   总被引:7,自引:0,他引:7  
The virgin state of stress in the earth's crust is disturbed by mine excavations which result in stress concentrations in the rock. Rock emits seismic pulses when subjected to stresses approaching in value the strength of the rock. Mining gives rise to seismic activity ranging from microseismic events radiating 10−5 J (M - 6) to rockbursts or tremors radiating 109 J (M5).

Rock failures in mines fall into four main categories: rockfalls, in which loosened rock falls mainly under its own weight; rockbursts which are violent failures of rock and may cause damage to excavations; bumps, which are violent failures, but which do not cause damage to the excavations; and outbursts in which the rapid release of gas causes rock to be ejected into the excavation. Microseismic activity is associated with all these four categories of rock failure.

Rockbursts and bumps occur in deep metalliferous mines in which thin tabular deposits in strong, brittle siliceous rocks of igneous or metamorphic origin are worked. The seismicity associated with mining appears to have many features in common with those natural earthquakes. However, the mechanics and dynamics of mining can be analysed relatively completely and the excavations provide access to the source region of the seismic events.

Comprehensive studies of rock deformation and fractures have been made on several gold mines of the Witwatersrand System. The gold-bearing reefs are mined at depths of down to more than 3 km below surface by stoping. This creates flat voids in the quartzitic strata extending laterally for distances of up to several kilometres with an initial excavated thickness of a metre. Geodetic-type measurements in tunnels and boreholes traversing the rock mass around these excavations have shown that the rock mass responds elastically over long periods of time to the extension of the boundaries of the excavations resulting from advancing the stope faces. Failure of the rock in the regions of maximum stress concentration near the edges of these excavations is an unavoidable concomitant of mining. It gives rise to new fracture planes closely parallel to the stope faces and to continuous seismic activity. The foci of seismic events with magnitudes from less than 0 to greater than 3 are found to occur mainly within tens of metres of the advancing stope faces. Diurnal and weekly distributions of seismic activity and of deformation show that the failure of the rock is time-dependent. The seismic radiation efficiency has been found to be of the order of 0.1%.

The seismicity is related to the spatial rate of energy release associated with the extension of the excavations and the incidence of seismic events and their magnitudes can be predicted statistically from calculated values of this quantity.  相似文献   

242.
In Permian shales of the Sydney Basin, Australia, n-alkane distributions have been compared with effective coalification temperatures (ECTs) estimated from vitrinite reflectivities. The upper, non-marine part of the section shows evidence of progressive cracking (shift of n-alkane maximum toward shorter chains and tendency to eliminate longer chains) as depth and ECT increase; but this trend is not maintained in the underlying marine section.All samples show lack of a maximum in the longer-chain n-alkane distribution. Possible reasons discussed are (i) a cracking rate of long chains greater than their formation rate; (ii) a need for higher temperatures than the rock has so far undergone to produce a new crop of long chains; or (iii) exhaustion of the straight-chain generating potential of the kerogen. Pyrolysis experiments may be effective in testing these possibilities.The linking of ECTs to alteration stages of sediment hydrocarbons opens the possibility of comparing these stages among formations which differ in age and organic and inorganic composition, and among basins of diverse geological history.  相似文献   
243.
244.
245.
Traditional measures of benefits have focused primarily on efficiency, with some attention directed towards effectiveness. This paper describes community systems – ostensibly multipurpose land information systems (MPLIS) – that produce three categories of benefits: efficiency, effectiveness and equity (or empowerment). Building on the theoretical model of MPLIS development, the paper defines each type of benefit and describes when and where they can be observed and how they can be measured. The understanding of system benefits promoted by this paper is significant in that it places a higher emphasis on uses of system products throughout the community beyond the agencies that initiate the systems – and therefore community benefits than previous geographic information science benefits research.  相似文献   
246.
Using groundwater levels to estimate recharge   总被引:24,自引:4,他引:24  
Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods. Electronic Publication  相似文献   
247.
Theme issue on groundwater recharge   总被引:1,自引:0,他引:1  
  相似文献   
248.
EVENT has been used to examine the effects of 3D cloud structure, distribution, and inhomogeneity on the scattering of visible solar radiation and the resulting 3D radiation field. Large eddy simulation and aircraft measurements are used to create realistic cloud fields which are continuous or broken with smooth or uneven tops. The values, patterns and variance in the resulting downwelling and upwelling radiation from incident visible solar radiation at different angles are then examined and compared to measurements. The results from EVENT confirm that 3D cloud structure is important in determining the visible radiation field, and that these results are strongly influenced by the solar zenith angle. The results match those from other models using visible solar radiation, and are supported by aircraft measurements of visible radiation, providing confidence in the new model.  相似文献   
249.
We address the question of the predictability of skarn textures and their role in understanding the evolution of a skarn system. Recent models of skarn formation show that skarns are ideal for application of self-organisation theory, with self-patterning the rule in fluid-rock interaction systems rather than the exception. Zonation in skarn deposits, a consequence of infiltration-driven metasomatism, can also be treated in terms of self-organisation. Other less commonly described features, such as scalloping, fingering and mineral banding, can be understood by application of reactive infiltration and hydrodynamics at the skarn front. Devolatilisation may trigger formation of back-flow fluxes that overprint previously formed skarn. The range of textures formed from such events can be used to discriminate between prograde and retrograde stages. Refractory minerals, such as garnet, magnetite and pyrite, readily retain overprinting events. Skarns are also composed largely of minerals from solid solution series (garnet, pyroxene, pyroxenoids, etc.) and therefore skarn mineralogy helps to establish trends of zonation and evolution. The same minerals can act as ‘chemical oscillators’ and record metasomatic trends.The Ocna de Fier-Dognecea deposit was formed in a 10 km deep skarn system. Zonation and evolution trends therefore represent only the result of interaction between magmatically derived fluids emerging at the source and limestone. From the same reason, the transition from prograde to retrograde regime is not influenced by interaction with external fluids. Thirdly, the mineralisation comprises Fe, Cu and Zn-Pb ores, thus facilitating comparison with skarn deposits that commonly are formed in shallower magmatic-hydrothermal environment. Copper-iron ores (magnetite+Cu-Fe sulphides), hosted by magnesian (forsterite+diopside) skarn, occur in the deepest and central part of the orefield, at Simon Iuda. Their petrological character allows interpretation as the core of the skarn system formed from a unique source of fluids emerging from the subjacent granodiorite. It formed first as a consequence of the local setting, where a limestone indented in the granodiorite permitted strong reaction at 650 °C and focussed the up-streaming, buoyant fluids. The first sharp front of reaction is seen at the boundary between the Cu-Fe core and Fe ores hosted by calcic skarn (Di70-90-And70-90), where Cu-Fe sulphides disappear, and forsterite gives way to garnet in the presence of diopside (Di90). Following formation of forsterite, devolatilisation and transient plume collapse is interpreted from a range of piercing clusters and trails. We presume lateral flow to have been initiated at the source, as the emerging fluids are in excess to the fluids driven into reaction by the plume. Formation of the other orebodies, up to 5 km laterally downstream in both directions, is interpreted as skarn fingering at the limestone side. The metasomatic front is perpendicular to the flow along the channel of schists placed between the limestone base and the granodiorite.A metal zonation centred onto the source is defined, based on metal distribution: Cu-Fe/Fe/Zn-Pb. The second front of reaction, at the boundary between the Fe and Zn-Pb zone, has a sulphidation/oxidation character, with diopside giving way to a Fe-Mn-rich pyroxene, (HedJoh)>60+pyroxmangite±bustamite; garnet is minor. Johannsenite-rich pyroxene (Di20-40Hed20-40Joh40) is found in proximal skarn at the upper part of Simon Iuda, stable with Zn0.95Fe0.05S, at an inferred 570 °C. In distal skarn from Dognecea and Paulus, Mn-hedenbergite (Di<10Hed70Joh20-30) formed at 400 °C is stable with Zn0.84Fe0.16S. Extensive compositional fields, eutectic decomposition and lamellar intergrowths characterise pyroxene in the Zn-Pb zone, formed at the magnetite-hematite buffer in the presence of pyrite. Distal skarn has a reducing character, in comparison with the proximal. A drop in both fS2 and O2, with the zoned system moving closer to the pyrite-pyrrhotite buffer, is induced from the temperature gradient. Based on pyroxene mineralogy and calculated fS2, the metal zonation is confirmed as being formed upwards and outwards from the source.The Fe and Zn-Pb zones both have a patterned side coexisting with the unpatterned one. Patterning is seen at scales from macroscopic (rhythmic banding, nodular, spotted, orbicular, mossy, mottled textures) to microscopic scales (oscillatory zonation in garnet and silica-bearing magnetite). Following plume updraft, the path of decarbonation reaction controlled the motion of the skarn front until, towards the end of the prograde stage, a multiple steady state regime developed and produced rhythmic patterns on all scales. The activation of powerful patterning operators, represented by Liesegang banding alone, or coupled with competitive particle growth, show that the skarn front had the characteristics of an unstable coarsening front of reaction.A second retrograde event, carbofracturing, triggered by erratic decarbonation after cessation of infiltration, can be interpreted from overprinting textures in the Fe and Zn-Pb zone. A major drop in fO2 is inferred from extensive, pseudomorphous replacement of hematite by magnetite. Textures show progressive destruction of prograde assemblages, i.e., piercing clusters, shock-induced, fluid-pressure assisted brecciation and deformation, followed by healing of the disrupted assemblages. Release of trace elements accompanies both retrograde events, with a Bi-Te-Au-Ag association common to both. The importance of shock-induced textures is emphasised in the context of Au enrichment, especially when the retrograde fluids cross the main buffers in fO2-fS2 space.The presence of Bi-sulphosalt polysomes in the Fe zone indicates that patterning extends down to the nanoscale. The key role played by polysomatism in stabilising compositional trends that cannot otherwise be formed at equilibrium is a fertile ground yet to be adequately explored.  相似文献   
250.
The Pt-Re-Os isotopic and elemental systematics of 13 group IIAB and 23 group IIIAB iron meteorites are examined. As has been noted previously for iron meteorite groups and experimental systems, solid metal-liquid metal bulk distribution coefficients (D values) for both IIAB and IIIAB systems show DOs>DRe>>DPt>1 during the initial stages of core crystallization. Assuming closed-system crystallization, the latter stages of crystallization for each core are generally characterized by DPt>DRe>DOs. The processes governing the concentrations of these elements are much more complex in the IIIAB core relative to the IIAB core. Several crystallization models utilizing different starting parameters and bulk distribution coefficients are considered for the Re-Os pair. Each model has flaws, but in general, the results suggest that the concentrations of these elements were dominated by equilibrium crystallization and subsequent interactions between solid metal and both equilibrium and evolved melts. Late additions of primitive metal to either core were likely minor or nonexistent.The 187Re-187Os systematics of the IIAB and IIIAB groups are consistent with generally closed-system behavior for both elements since the first several tens of Ma of the formation of the solar system, consistent with short-lived chronometers. The Re-Os isochron ages for the complete suites of IIAB and IIIAB irons are 4530 ± 50 Ma and 4517 ± 32 Ma, respectively, and are similar to previously reported Re-Os ages for the lower-Ni endmembers of these two groups. Both isochrons are consistent with, but do not require crystallization of the entire groups within 10-30 Ma of the initiation of crystallization.The first high-precision 190Pt-186Os isochrons for IIAB and IIIAB irons are presented. The Pt-Os isochron ages for the IIAB and IIIAB irons, calculated using the current best estimate of the λ for 190Pt, are 4323 ± 80 Ma and 4325 ± 26 Ma respectively. The Re-Os and Pt-Os ages do not overlap within the uncertainties. The younger apparent ages recorded by the Pt-Os system likely reflect error in the 190Pt decay constant. The slope from the Pt-Os isochron is combined with the age from the Re-Os isochron for the IIIAB irons to calculate a revised λ of 1.415 × 10−12 a−1 for 190Pt, although additional study of this decay constant is still needed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号