首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59613篇
  免费   638篇
  国内免费   304篇
测绘学   1412篇
大气科学   4031篇
地球物理   10925篇
地质学   24238篇
海洋学   4757篇
天文学   12055篇
综合类   236篇
自然地理   2901篇
  2022年   257篇
  2021年   440篇
  2020年   499篇
  2019年   576篇
  2018年   3750篇
  2017年   3515篇
  2016年   2529篇
  2015年   692篇
  2014年   1061篇
  2013年   1853篇
  2012年   2204篇
  2011年   4118篇
  2010年   3740篇
  2009年   4188篇
  2008年   3457篇
  2007年   4078篇
  2006年   1602篇
  2005年   1497篇
  2004年   1425篇
  2003年   1532篇
  2002年   1244篇
  2001年   894篇
  2000年   832篇
  1999年   723篇
  1998年   715篇
  1997年   723篇
  1996年   588篇
  1995年   572篇
  1994年   501篇
  1993年   453篇
  1992年   409篇
  1991年   424篇
  1990年   437篇
  1989年   391篇
  1988年   369篇
  1987年   400篇
  1986年   415篇
  1985年   508篇
  1984年   545篇
  1983年   542篇
  1982年   496篇
  1981年   466篇
  1980年   449篇
  1979年   408篇
  1978年   375篇
  1977年   384篇
  1976年   348篇
  1975年   353篇
  1974年   340篇
  1973年   370篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The paper considers a digital modeling complex for the attitude control system of the Auriga Earth remote sensing small spacecraft. Mathematical models of measuring and executive devices are described. The results of spacecraft orbital attitude tests are presented.  相似文献   
992.
We study, by means of a spherical collapse model, the effect of shear, rotation, and baryons on a generalized Chaplygin gas (gCg) dominated universes. We show that shear, rotation, and the baryon presence slow down the collapse with respect to the simple spherical collapse model. The slowing down in the growth of density perturbation is able to solve the instability of the unified dark matter (UDM) models described in previous papers (e.g., Sandvik et al. 2004) at the linear perturbation level, as also shown by a direct comparison of our model with previous results.  相似文献   
993.
Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/r ? 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.  相似文献   
994.
995.
The extended X-ray emission observed at arcsec scales along the propagation trajectory of the precessing relativistic jets of the Galactic microquasar SS 433 features a broad emission line, with the position of the centroid being significantly different for the approaching and receding jets (≈7.3 and ≈6.4 keV, respectively). These observed line positions are at odds with the predictions of the kinematic model for any of the plausible bright spectral lines in this band, raising the question of their identification. Here we address this issue by taking into account time delays of the emission coming from the receding regions of the jets relative to that from the approaching ones, which cause a substantial phase shift and distortion of the predicted line positions for the extended (~1017 cm) emission compared to the X-ray and optical lines observed from the central source (emitted at distances ~1011 and ~1015 cm, respectively). We demonstrate that the observed line positions are fully consistent with the Fe XXVI Lyα (E 0 = 6.96 keV) line emerging from a region of size ~6 × 1016 cm along the jet. This supports the idea that intensive reheating of the jets up to temperatures >10 keV takes place at these distances, probably as a result of partial deceleration of the jets due to interaction with the surrounding medium, which might cause collisions between discrete dense blobs inside the jets.  相似文献   
996.
Zahn’s theory of dynamical tides is analyzed critically. We compare the results of this theory with our numerical calculations for stars with a convective core and a radiative envelope and with masses of one and a half and two solar masses. We show that for a binary system consisting of stars of one and a half or two solar masses and a point object with a mass equal to the solar mass and with an orbital period of one day under the assumption of a dense spectrum and moderately rapid dissipation, the evolution time scales of the semimajor axis will be shorter than those in Zahn’s theory by several orders of magnitude.  相似文献   
997.
ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2–12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed < 1 mm below the main array. In this paper we report a scientific assessment of the CryoAC observational capabilities in the hard X-ray band (E > 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.  相似文献   
998.
SVOM (Space-based multi-band astronomical Variable Objects Monitor) is a Sino-French space mission dedicated to the study of Gamma-Ray Bursts (GRBs) in the next decade, capable to detect and localise the GRB emission, and to follow its evolution in the high-energy and X-ray domains, and in the visible and NIR bands. The satellite carries two wide-field high-energy instruments: a coded-mask gamma-ray imager (ECLAIRs; 4–150 keV), and a gamma-ray spectrometer (GRM; 15–5500 keV) that, together, will characterise the GRB prompt emission spectrum over a wide energy range. In this paper we describe the performances of the ECLAIRs and GRM system with different populations of GRBs from existing catalogues, from the classical ones to those with a possible thermal component superimposed to their non-thermal emission. The combination of ECLAIRs and the GRM will provide new insights also on other GRB properties, as for example the spectral characterisation of the subclass of short GRBs showing an extended emission after the initial spike.  相似文献   
999.
The Astronomical Röntgen Telescope X-ray Concentrator (ART-XC) is a hard X-ray telescope with energy response up to 30 keV, to be launched on board the Spectrum Röntgen Gamma (SRG) spacecraft in 2018. ART-XC consists of seven identical co-aligned mirror modules. Each mirror assembly is coupled with a CdTe double-sided strip (DSS) focal-plane detector. Eight X-ray mirror modules (seven flight and one spare units) for ART-XC were developed and fabricated at the Marshall Space Flight Center (MSFC), NASA, USA. We present results of testing procedures performed with an X-ray beam facility at MSFC to calibrate the point spread function (PSF) of the mirror modules. The shape of the PSF was measured with a high-resolution CCD camera installed in the focal plane with defocusing of 7 mm, as required by the ART-XC design. For each module, we performed a parametrization of the PSF at various angular distances Θ. We used a King function to approximate the radial profile of the near on-axis PSF (Θ < 9 arcmin) and an ellipse fitting procedure to describe the morphology of the far off-axis angular response (9 < Θ < 24 arcmin). We found a good agreement between the seven ART-XC flight mirror modules at the level of 10%. The on-axis angular resolution of the ART-XC optics varies between 27 and 33 arcsec (half-power diameter), except for the spare module.  相似文献   
1000.
We use a secular model to describe the non-resonant dynamics of trans-Neptunian objects in the presence of an external ten-Earth-mass perturber. The secular dynamics is analogous to an “eccentric Kozai mechanism” but with both an inner component (the four giant planets) and an outer one (the eccentric distant perturber). By the means of Poincaré sections, the cases of a non-inclined or inclined outer planet are successively studied, making the connection with previous works. In the inclined case, the problem is reduced to two degrees of freedom by assuming a non-precessing argument of perihelion for the perturbing body. The size of the perturbation is typically ruled by the semi-major axis of the small body: we show that the classic integrable picture is still valid below about 70 AU, but it is progressively destroyed when we get closer to the external perturber. In particular, for \(a>150\) AU, large-amplitude orbital flips become possible, and for \(a>200\) AU, the Kozai libration islands at \(\omega =\pi /2\) and \(3\pi /2\) are totally submerged by the chaotic sea. Numerous resonance relations are highlighted. The most large and persistent ones are associated with apsidal alignments or anti-alignments with the orbit of the distant perturber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号