首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地质学   13篇
  2012年   1篇
  2010年   1篇
  2009年   4篇
  2008年   4篇
  2006年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有13条查询结果,搜索用时 390 毫秒
11.
Drilling through the Palaeoproterozoic bedrock at Forsmark, central Sweden, during the site investigation for a potential geological repository of highly radioactive nuclear waste has provided high quality drill-core material from the upper 1 km of the Fennoscandian Shield. Analyses of stable isotopes (δ13C, δ18O, δ34S, 87Sr/86Sr), rare earth elements and fluid inclusions in fracture filling calcite and pyrite from these drill cores have resulted in the discrimination of several episodes of fracture mineralisations. These events represent migration of fluids during a wide range of conditions, ranging from high-temperature hydrothermal to present-day groundwater circulation. Four major events have been distinguished: 1) Precipitation of epidote, chlorite and quartz under hydrothermal conditions (T > 150–200 °C) during the Proterozoic, sometime between 1.8 and 1.1 Ga. 2) Hydrothermal circulation at temperatures close to 200 °C with precipitation of adularia, albite, prehnite, laumontite, calcite and chlorite. Most of these minerals precipitated during a tectonothermal event between 1.1 and 1.0 Ga, possibly in response to far-field effects of the Sveconorwegian orogeny. 3) Precipitation of mainly quartz, calcite, pyrite and asphaltite occurred during the Palaeozoic, at temperatures between 60 and 190 °C (mainly at < 100 °C). Mixing of a fluid emanating from an organic rich overlying sedimentary cover and a deep basinal fluid from the crystalline bedrock is suggested to have caused this precipitation, possibly as a far-field response to the Caledonian orogeny and/or the development of the Caledonian foreland basin. 4) The youngest generation of fracture minerals is associated with formation of clay minerals and calcite with minor occurrences of pyrite and goethite. These minerals have probably precipitated episodically during a long time period (possibly from the Late Palaeozoic to the present) from various fluids at low temperature conditions (< 50 °C). Few calcites in equilibrium with the present groundwater suggest that the ongoing precipitation of calcite is very limited.  相似文献   
12.
Fracture minerals calcite, pyrite, gypsum, barite and quartz, formed during several events have been analysed for δ13C, δ18O, δ34S, 87Sr/86Sr, trace element chemistry and fluid inclusions in order to gain knowledge of the paleohydrogeological evolution of the Simpevarp area, south-eastern Sweden. This area is dominated by Proterozoic crystalline rocks and is currently being investigated by the Swedish Nuclear Fuel and Waste Management Co. (SKB) in order to find a suitable location for a deep-seated repository for spent nuclear fuel. Knowledge of the paleohydrogeological evolution is essential to understand the stability or evolution of the groundwater system over a time scale relevant to the performance assessment for a spent nuclear fuel repository. The ages of the minerals analysed range from the Proterozoic to possibly the Quaternary. The Proterozoic calcite and pyrite show inorganic and hydrothermal-magmatic stable isotope signatures and were probably formed during a long time period as indicated by the large span in temperatures (c. 200–360 °C) and salinities (0–24 wt.% eq. CaCl2), obtained from fluid inclusion analyses. The Paleozoic minerals were formed from organically influenced brine-type fluids at temperatures of 80–145 °C. The isotopic results indicate that low temperature calcite and pyrite may have formed during different events ranging in time possibly from the end of the Paleozoic until the Quaternary. Formation conditions ranging from fresh to brackish and saline waters have been distinguished based on calcite crystal morphologies. The combination of δ18O and crystal morphologies show that the fresh–saline water interface has changed considerably over time, and water similar to the present meteoric water and brackish seawater at the site, have most probably earlier been residing in the bedrock. Organic influence and closed system in situ microbial activity causing disequilibrium are indicated by extremely low δ13C (down to −99.7‰), extreme variation in δ34S (−42.5‰ to +60.8‰) and trace element compositions. The frequency of calcite low in δ13C and high in Mn, as well as pyrite with biogenically modified δ34S decreases with depth. Strontium isotopes have been useful to separate the different generations and the Sr isotope ratios in the groundwaters have been determined mainly by in situ water–rock interaction processes. The difficulty of separating late Paleozoic calcite from possibly recent calcite, and the fact that these calcites are usually found in the same fracture systems indicate that water conducting structures have been intermittently conductive from the Paleozoic and onwards. The methodology used has been successful in separating the different generations and characterising their formation conditions.  相似文献   
13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号